Trans-vaccenate is Δ13-desaturated by FADS3 in rodents
- PMID: 24070791
- PMCID: PMC3826690
- DOI: 10.1194/jlr.M042572
Trans-vaccenate is Δ13-desaturated by FADS3 in rodents
Abstract
Fatty acid desaturases play critical roles in regulating the biosynthesis of unsaturated fatty acids in all biological kingdoms. As opposed to plants, mammals are so far characterized by the absence of desaturases introducing additional double bonds at the methyl-end site of fatty acids. However, the function of the mammalian fatty acid desaturase 3 (FADS3) gene remains unknown. This gene is located within the FADS cluster and presents a high nucleotide sequence homology with FADS1 (Δ5-desaturase) and FADS2 (Δ6-desaturase). Here, we show that rat FADS3 displays no common Δ5-, Δ6- or Δ9-desaturase activity but is able to catalyze the unexpected Δ13-desaturation of trans-vaccenate. Although there is no standard for complete conclusive identification, structural characterization strongly suggests that the Δ11,13-conjugated linoleic acid (CLA) produced by FADS3 from trans-vaccenate is the trans11,cis13-CLA isomer. In rat hepatocytes, knockdown of FADS3 expression specifically reduces trans-vaccenate Δ13-desaturation. Evidence is presented that FADS3 is the first "methyl-end" fatty acid desaturase functionally characterized in mammals.
Keywords: FADS cluster; conjugated linoleic acid; desaturase activity; fatty acid desaturase; rumenic acid; trans-vaccenic acid; trans11,cis13-octadecadienoic acid.
Figures












Similar articles
-
Conversion of dietary trans-vaccenic acid to trans11,cis13-conjugated linoleic acid in the rat lactating mammary gland by Fatty Acid Desaturase 3-catalyzed methyl-end Δ13-desaturation.Biochem Biophys Res Commun. 2018 Oct 28;505(2):385-391. doi: 10.1016/j.bbrc.2018.09.132. Epub 2018 Sep 24. Biochem Biophys Res Commun. 2018. PMID: 30262139
-
Synthesis of the suspected trans-11,cis-13 conjugated linoleic acid isomer in ruminant mammary tissue by FADS3-catalyzed Δ13-desaturation of vaccenic acid.J Dairy Sci. 2017 Jan;100(1):783-796. doi: 10.3168/jds.2016-11455. Epub 2016 Nov 17. J Dairy Sci. 2017. PMID: 27865506
-
Fatty Acid Desaturase 3 (FADS3) Is a Specific ∆13-Desaturase of Ruminant trans-Vaccenic Acid.Lifestyle Genom. 2019;12(1-6):18-24. doi: 10.1159/000502356. Epub 2019 Sep 11. Lifestyle Genom. 2019. PMID: 32911476 Review.
-
Fatty Acid Desaturase 3 (Fads3) is a singular member of the Fads cluster.Biochimie. 2011 Jan;93(1):87-90. doi: 10.1016/j.biochi.2010.03.002. Epub 2010 Mar 11. Biochimie. 2011. PMID: 20226833 Review.
-
The role of fatty acid desaturase (FADS) genes in oleic acid metabolism: FADS1 Δ7 desaturates 11-20:1 to 7,11-20:2.Prostaglandins Leukot Essent Fatty Acids. 2018 Jan;128:21-25. doi: 10.1016/j.plefa.2017.11.004. Epub 2017 Nov 21. Prostaglandins Leukot Essent Fatty Acids. 2018. PMID: 29413358 Free PMC article.
Cited by
-
Expression of SCD and FADS2 Is Lower in the Necrotic Core and Growing Tumor Area than in the Peritumoral Area of Glioblastoma Multiforme.Biomolecules. 2020 May 7;10(5):727. doi: 10.3390/biom10050727. Biomolecules. 2020. PMID: 32392704 Free PMC article.
-
The diversity and breadth of cancer cell fatty acid metabolism.Cancer Metab. 2021 Jan 7;9(1):2. doi: 10.1186/s40170-020-00237-2. Cancer Metab. 2021. PMID: 33413672 Free PMC article. Review.
-
Ability of the gut microbiota to produce PUFA-derived bacterial metabolites: Proof of concept in germ-free versus conventionalized mice.Mol Nutr Food Res. 2015 Aug;59(8):1603-13. doi: 10.1002/mnfr.201500014. Epub 2015 May 12. Mol Nutr Food Res. 2015. PMID: 25820326 Free PMC article.
-
Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances.Nutrients. 2016 Jan 4;8(1):23. doi: 10.3390/nu8010023. Nutrients. 2016. PMID: 26742061 Free PMC article. Review.
-
Review of Eukaryote Cellular Membrane Lipid Composition, with Special Attention to the Fatty Acids.Int J Mol Sci. 2023 Oct 28;24(21):15693. doi: 10.3390/ijms242115693. Int J Mol Sci. 2023. PMID: 37958678 Free PMC article. Review.
References
-
- Qi B., Fraser T., Mugford S., Dobson G., Sayanova O., Butler J., Napier J. A., Stobart A. K., Lazarus C. M. 2004. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat. Biotechnol. 22: 739–745 - PubMed
-
- Nakamura M. T., Nara T. Y. 2004. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu. Rev. Nutr. 24: 345–376 - PubMed
-
- Ailhaud G., Massiera F., Weill P., Legrand P., Alessandri J. M., Guesnet P. 2006. Temporal changes in dietary fats: role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Prog. Lipid Res. 45: 203–236 - PubMed
-
- Lauritzen L., Hansen H. S., Jorgensen M. H., Michaelsen K. F. 2001. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog. Lipid Res. 40: 1–94 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials