Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1990;10(1):13-30.

Poxvirus-based vectors as vaccine candidates

Affiliations
  • PMID: 2407263
Review

Poxvirus-based vectors as vaccine candidates

J Tartaglia et al. Crit Rev Immunol. 1990.

Abstract

The advent of recombinant DNA techniques and advances in immunology have provided a means for dissecting the immunobiology of disease-causing agents. Identification and expression of individual genes from the pathogens in heterologous systems, such as VV, have yielded valuable information regarding structural properties of the gene products and their role in eliciting protective immunity. Targets of both humoral and/or cellular immunity for many disease-causing agents have been identified or confirmed using a VV expression system (Section IV). Additionally, specific VV recombinants have induced a protective immune response in experimental animals. The ability of VV recombinants to induce pertinent immune responses necessary for protection, the potential to develop polyvalent vaccines, and the successful history of VV as an immunizing agent provide the impetus for engineering VV as a live recombinant vaccine candidate. Critical to the refinement of poxviruses as recombinant immunizing agents is a more in-depth knowledge of the molecular biology of these viruses. Although significant advances have been made in this area within the past 10 years, a greater understanding of the mechanisms governing gene expression and viral virulence factors should enable the development of more safe and effective vaccine candidates. Progression of VV vector technology to other members of the poxvirus family has been successful. Development of other poxviruses as vectors may, therefore, provide a means of generating host-restricted vaccines. Fowlpox recombinant viruses, for instance, may yield candidate vaccines in the poultry industry. Interestingly, it was also demonstrated that these host-restricted recombinant viruses can be used as immunizing vehicles in other species. The ability of a nonreplicating viral vector to elicit a protective immune response is especially intriguing in light of the observation by Morgan et al. that a VV/EBV gp340/220 recombinant, derived from an avirulent VV strain, was unable to protect cottontop tamarins from a live EBV challenge.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources