Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 16:57:214-23.
doi: 10.1016/j.ejps.2013.09.014. Epub 2013 Sep 27.

Effects of verapamil on the pharmacokinetics and hepatobiliary disposition of fexofenadine in pigs

Affiliations

Effects of verapamil on the pharmacokinetics and hepatobiliary disposition of fexofenadine in pigs

Erik Sjögren et al. Eur J Pharm Sci. .

Abstract

The pharmacokinetics (PK) of fexofenadine (FEX) in pigs were investigated with the focus on exploring the interplay between hepatic transport and metabolism when administered intravenously (iv) alone or with verapamil. The in vivo pig model enabled simultaneous sampling from plasma (pre-liver, post-liver and peripheral), bile and urine. Each animal was administered FEX 35mg iv alone or with verapamil 35mg. Plasma, bile and urine were analyzed with liquid chromatography-tandem mass spectrometry. Non-compartmental analysis (NCA) was used to estimate traditional PK parameters. In addition, a physiologically based pharmacokinetic (PBPK) model consisting of 11 compartments (6 tissues +5 sample sites) was applied for mechanistic elucidation and estimation of individual PK parameters. FEX had a terminal half-life of 1.7h and a liver extraction of 3%. The fraction of the administered dose of unchanged FEX excreted into the bile was 25% and the bile exposure was more than 100 times higher than the portal vein total plasma exposure, indicating carrier-mediated (CM) disposition processes in the liver. 23% of the administered dose of FEX was excreted unchanged in the urine. An increase in FEX plasma exposure (+50%) and a decrease in renal clearance (-61%) were detected by NCA as a direct effect of concomitant administration of verapamil. However, analysis of the PBPK model also revealed that biliary clearance was significantly inhibited (-53%) by verapamil. In addition, PBPK analysis established that metabolism and CM uptake were important factors in the disposition of FEX in the liver. In conclusion, this study demonstrated that CM transport of FEX in both liver and kidneys was inhibited by a single dose of verapamil.

Keywords: Carrier-mediated transport; Drug interaction; Fexofenadine; Hepatic disposition; Physiologically based pharmacokinetic modeling.

PubMed Disclaimer

MeSH terms

LinkOut - more resources