Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Jan:96:85-95.
doi: 10.1016/j.biochi.2013.09.015. Epub 2013 Sep 25.

START ships lipids across interorganelle space

Affiliations
Review

START ships lipids across interorganelle space

Fabien Alpy et al. Biochimie. 2014 Jan.

Abstract

The family of StAR related lipid transfer proteins (START) is so-named based on the distinctive capacity for these proteins to transport lipids between membranes. The START domain is a module of about 210 residues, which binds lipids such as glycerolipids, sphingolipids and sterols. This domain has a deep lipid-binding pocket - which shields the hydrophic ligand from the external aqueous environment - covered by a lid. Based on their homology, the fifteen START proteins in mammals have been allocated to six distinct subfamilies, each subfamily being more specialized in the transport and/or sensing of a lipid ligand species. However within the same subgroup, their expression profile and their subcellular localization distinguish them and are critical for their different biological functions. Indeed, START proteins act in a variety of distinct physiological processes, such as lipid transfer between intracellular compartments, lipid metabolism and modulation of signaling events. Mutation or deregulated expression of START proteins is linked to pathological processes, including genetic disorders, autoimmune diseases and cancers. Besides the common single START domain, which is always located at the carboxy-terminal end in mammals, most START proteins harbor additional domains predicted to be critical in favoring lipid exchange. Evidence from well characterized START proteins indicates that these additional domains might be tethering machineries able to bring distinct organelles together and create membrane contact sites prone to lipid exchange via the START domain.

Keywords: Lipid metabolism; Lipid transfer protein; Non-vesicular lipid transfer; START: (steroidogenic acute regulatory protein) related lipid transfer.

PubMed Disclaimer

Publication types

LinkOut - more resources