Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis
- PMID: 24076516
- DOI: 10.1016/j.jenvman.2013.08.058
Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis
Abstract
Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis under UVA (365 nm) irradiation was examined. Enhancement of degradation and improvement in biodegradability index (BOD5/COD ratio) by H2O2 addition were also evaluated. UVA irradiation per se produced insignificant degradation of the pesticides. In UV/TiO2 photocatalysis (TiO2 1.5 g L(-1), pH 6 and 300 min irradiation), COD and TOC removal were 25.95 and 8.45%, respectively. In UV/TiO2/H2O2 photocatalysis (TiO2 1.5 g L(-1), H2O2 100 mg L(-1), pH 6 and 300 min irradiation), COD and TOC removal were 53.62 and 21.54%, respectively and biodegradability index improved to 0.26. Ammonia-nitrogen (NH3-N) decreased from 22 to 7.8 mg L(-1) and nitrate-nitrogen (NO3(-)-N) increased from 0.7 to 13.8 mg L(-1) in 300 min, indicating mineralization. Photocatalytic degradation followed pseudo-first order kinetics with rate constant (k) of 0.0025 and 0.0008 min(-1) for COD and TOC removal, respectively. FTIR spectra indicated degradation of the organic bonds of the pesticides. UV/TiO2/H2O2 photocatalysis is effective in degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution. UV/TiO2/H2O2 photocatalysis may be applied as pretreatment of a chlorpyrifos, cypermethrin and chlorothalonil pesticide wastewater at pH 6, for biological treatment.
Keywords: Chlorothalonil; Chlorpyrifos; Cypermethrin; Pesticide; Photocatalysis; UV/TiO(2); UV/TiO(2)/H(2)O(2).
Copyright © 2013 Elsevier Ltd. All rights reserved.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
