Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct;132(4):967-975.
doi: 10.1097/PRS.0b013e31829f4b59.

Autologous immediate cranioplasty with vascularized bone in high-risk composite cranial defects

Affiliations

Autologous immediate cranioplasty with vascularized bone in high-risk composite cranial defects

Justine C Lee et al. Plast Reconstr Surg. 2013 Oct.

Abstract

Background: Composite cranial defects in the setting of infection, irradiation, or cerebrospinal fluid leak present a significant risk for devastating neurologic sequelae. Such defects require soft-tissue coverage and skeletal reconstruction that can withstand the hostile environment of a precarious wound.

Methods: Patients with high-risk composite cranial defects treated with free flap reconstruction containing a vascularized osseous component from 2003 to 2012 were reviewed retrospectively.

Results: Fourteen patients received autologous vascularized cranioplasties between 2003 and 2012 with a mean age of 55.7 years and a mean follow-up of 14.1 months. Preoperatively, all patients had infection, irradiation, cerebrospinal fluid leak, or a combination thereof. Thirteen patients (92.9 percent) were reoperative cases for recurrent tumor, infection, or both. Six patients (42.9 percent) failed previous reconstructive procedures. Tissue biopsy-proven infection was present in 10 patients (71.4 percent) with calvarial osteomyelitis, both osteomyelitis and meningitis, or scalp soft-tissue infection only. Nine patients (64.3 percent) suffered from malignancy and six of these patients were irradiated preoperatively. Cranioplasty was achieved as part of a chimeric free flap using rib, scapula, both rib and scapula, or ilium. Vascularized duraplasty using serratus anterior fascia as a component of the chimeric flap was performed in three patients. No flap losses occurred and all patients had resolution of infection.

Conclusions: Soft-tissue and skeletal restoration are the two critical components of composite cranial reconstruction. The authors report outcomes of the largest series of one-stage immediate cranioplasty consisting of autologous soft tissue and vascularized bone in high-risk composite cranial wounds and suggest its application in defects associated with compromised wound beds.

Clinical question/level of evidence: Therapeutic, IV.

PubMed Disclaimer

References

    1. Baumeister S, Peek A, Friedman A, Levin LS, Marcus JR. Management of postneurosurgical bone flap loss caused by infection. Plast Reconstr Surg. 2008;122:195e–208e
    1. Fodstad H, Love JA, Ekstedt J, Fridén H, Liliequist B. Effect of cranioplasty on cerebrospinal fluid hydrodynamics in patients with the syndrome of the trephined. Acta Neurochir (Wien). 1984;70:21–30
    1. Suzuki N, Suzuki S, Iwabuchi T. Neurological improvement after cranioplasty: Analysis by dynamic CT scan. Acta Neurochir (Wien). 1993;122:49–53
    1. Manson PN, Crawley WA, Hoopes JE. Frontal cranioplasty: Risk factors and choice of cranial vault reconstructive material. Plast Reconstr Surg. 1986;77:888–904
    1. Seitz IA, Adler N, Odessey E, Reid RR, Gottlieb LJ. Latissimus dorsi/rib intercostal perforator myo-osseocutaneous free flap reconstruction in composite defects of the scalp: Case series and review of literature. J Reconstr Microsurg. 2009;25:559–567

MeSH terms