Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Oct 1;14(1):80.
doi: 10.1186/1129-2377-14-80.

Peripheral vascular dysfunction in migraine: a review

Affiliations
Review

Peripheral vascular dysfunction in migraine: a review

Simona Sacco et al. J Headache Pain. .

Abstract

Numerous studies have indicated an increased risk of vascular disease among migraineurs. Alterations in endothelial and arterial function, which predispose to atherosclerosis and cardiovascular diseases, have been suggested as an important link between migraine and vascular disease. However, the available evidence is inconsistent. We aimed to review and summarize the published evidence about the peripheral vascular dysfunction of migraineurs.We systematically searched in BIOSIS, the Cochrane database, Embase, Google scholar, ISI Web of Science, and Medline to identify articles, published up to April 2013, evaluating the endothelial and arterial function of migraineurs.Several lines of evidence for vascular dysfunction were reported in migraineurs. Findings regarding endothelial function are particularly controversial since studies variously indicated the presence of endothelial dysfunction in migraineurs, the absence of any difference in endothelial function between migraineurs and non-migraineurs, and even an enhanced endothelial function in migraineurs. Reports on arterial function are more consistent and suggest that functional properties of large arteries are altered in migraineurs.Peripheral vascular function, particularly arterial function, is a promising non-invasive indicator of the vascular health of subjects with migraine. However, further targeted research is needed to understand whether altered arterial function explains the increased risk of vascular disease among patients with migraine.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Flow-mediated dilation. Flow-mediated dilation (FMD) measures endothelial function by inducing a temporary ischemia in a brachial artery and observing the amount of vasodilation following the stressor event. After a baseline measurement of the artery diameter via an ultrasound probe, a sphygmomanometer blood pressure cuff is positioned on the right forearm 2 cm below the elbow and inflated to 250 mmHg to produce ischemia in the forearm. The cuff is deflated after some minutes, usually 5, thus causing a reactive hyperemia which in turn produces a shear stress stimulus that induces the endothelium to release nitric oxide as a vasodilator. FMD is considered as diameter after reactive hyperemia - basal diameter/basal diameter × 100. The figure shows the diameter (upper part) and shear rate (lower part) of brachial artery during FMD before (grey-shaded part on the left), during (black-shaded part), and after (grey-shaded part on the right) ischemia.
Figure 2
Figure 2
Carotid-Femoral Pulse Wave Velocity. Increased arterial stiffness leads to increased velocity of the pulse wave generated in the arteries by the contraction of the left ventricle. Pulse wave velocity (PWV) consists in measuring pulse wave profiles by tonometry at two distant locations (carotid and femoral) and measuring the delay in the onset of the wave between those two locations. PWV is calculated as the distance traveled by the wave divided by the time taken to travel that distance. Surface distance between the two recording sites and simultaneously recorded electrocardiograms are used to calculate wave transit time. The figure shows tonometric (white lines) recordings of the carotid (above) and femoral (below) artery waves according with simultaneous electrocardiographic (yellow lines) ‘R’ wave of the electrocardiogram as a timing reference.
Figure 3
Figure 3
Augmentation Index. The interaction between the incident pulse wave and the reflected pulse wave, which is generated by the arterial resistance, is expressed by the augmentation index, which is the amount of pulse wave induced only by arterial resistance. In the figure, the upper arrow indicates the first systolic peak (incident wave), while the lower arrow indicates the second systolic peak (reflected wave). The ratio between the reflected wave/incident wave × 100 is the augmentation index.

References

    1. Connor RC. Complicated migraine. A study of permanent neurological and visual defects caused by migraine. Lancet. 1962;14:1072–1075. - PubMed
    1. Carolei A, Marini C, Di Napoli M, Di Gianfilippo G, Santalucia P, Baldassarre M, De Matteis G, di Orio F. High stroke incidence in the prospective community-based L’Aquila registry (1994–1998). First year’s results. Stroke. 1997;14:2500–2506. - PubMed
    1. Tzourio C, Iglesias S, Hubert JB, Visy JM, Alpérovitch A, Tehindrazanarivelo A, Biousse V, Woimant F, Bousser MG. Migraine and risk of ischaemic stroke: a case–control study. BMJ. 1993;14:289–292. - PMC - PubMed
    1. Kurth T, Diener HC. Migraine and stroke: perspectives for stroke physicians. Stroke. 2012;14:3421–3426. - PubMed
    1. Kurth T, Chabriat H, Bousser MG. Migraine and stroke: a complex association with clinical implications. Lancet Neurol. 2012;14:92–100. - PubMed

MeSH terms