Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Oct;30(5):477-89.
doi: 10.1097/WNP.0b013e3182a73e47.

EEG patterns in hypoxic encephalopathies (post-cardiac arrest syndrome): fluctuations, transitions, and reactions

Affiliations
Review

EEG patterns in hypoxic encephalopathies (post-cardiac arrest syndrome): fluctuations, transitions, and reactions

Gerhard Bauer et al. J Clin Neurophysiol. 2013 Oct.

Abstract

In patients with coma resulting from hypoxic encephalopathy (e.g., after cardiac arrest), the EEG may reflect the severity of brain dysfunction, although the exact relationship among the EEG changes, the extent of neuronal damage, and consequent prognosis is still under study. Many prognostications are based on particular EEG patterns at a time point, such as burst suppression or generalized periodic discharges, but with sequential, repeated, or with prolonged or continuous EEG monitoring, it has become increasingly clear that more information might be gleaned from EEG pattern changes over time. Short-term fluctuations (as opposed to permanent transitions), or preserved reactions to exogenous stimuli, have to be differentiated. This review presents many of the typical postanoxic EEG patterns, along with their evolution over time. This preliminary report illustrates the temporal dynamic changes of EEG over time. It is hoped that it will act as a starting point for prospective and systematic investigation to test whether EEG evolution and transitions add diagnostic and prognostic value.

PubMed Disclaimer

LinkOut - more resources