Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Sep 30;14(10):19805-30.
doi: 10.3390/ijms141019805.

Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis

Affiliations
Review

Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis

Ashish R Sharma et al. Int J Mol Sci. .

Abstract

Osteoarthritis (OA) is a common debilitating joint disorder, affecting large sections of the population with significant disability and impaired quality of life. During OA, functional units of joints comprising cartilage and subchondral bone undergo uncontrolled catabolic and anabolic remodeling processes to adapt to local biochemical and biological signals. Changes in cartilage and subchondral bone are not merely secondary manifestations of OA but are active components of the disease, contributing to its severity. Increased vascularization and formation of microcracks in joints during OA have suggested the facilitation of molecules from cartilage to bone and vice versa. Observations from recent studies support the view that both cartilage and subchondral bone can communicate with each other through regulation of signaling pathways for joint homeostasis under pathological conditions. In this review we have tried to summarize the current knowledge on the major signaling pathways that could control the cartilage-bone biochemical unit in joints and participate in intercellular communication between cartilage and subchondral bone during the process of OA. An understanding of molecular communication that regulates the functional behavior of chondrocytes and osteoblasts in both physiological and pathological conditions may lead to development of more effective strategies for treating OA patients.

PubMed Disclaimer

Figures

Figure 1
Figure 1
A schematic diagram demonstrating the anatomy of articular cartilage and subchondral bone in normal and osteoarthritis (OA) joints. Normal articular cartilage is divided into superficial tangential zone, middle zone, deep zone, and calcified cartilage zone. These zones consist of a small number of chondrocytes trapped in collagen matrix. Calcified cartilage is separated by a tidemark from the deep zone, and rests directly on subchondral bone. Subchondral bone beneath the articular cartilage is organized into two layers: cortical plate and cancellous bone. Subchondral bone helps to maintain the integrity of the overlying articular cartilage. Alteration in OA joint is represented by collagen matrix disruption in articular cartilage and thickening of subchondral bone. Fissuring and flanking in articular cartilage induces vascularization of cartilage, leading to exposure of subchondral bone to external surface. Microcracks in the subchondral bone contribute to reactivation and upward shifting of the tidemark (demarcation line), representing thin articular cartilage with thick subchondral cortical plate. Subchondral sclerosis is a hall mark of progressive OA. (Figure produced using Servier Medical Art [17]).
Figure 2
Figure 2
Schematic diagram representing possible interaction of antagonists of WNT and BMP signaling pathways during progression of OA.

References

    1. Castaneda S., Roman-Blas J.A., Largo R., Herrero-Beaumont G. Subchondral bone as a key target for osteoarthritis treatment. Biochem. Pharmacol. 2012;83:315–323. - PubMed
    1. Lawrence R.C., Felson D.T., Helmick C.G., Arnold L.M., Choi H., Deyo R.A., Gabriel S., Hirsch R., Hochberg M.C., Hunder G.G., et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58:26–35. - PMC - PubMed
    1. Lawrence J.S., Bremner J.M., Bier F. Osteo-arthrosis. Prevalence in the population and relationship between symptoms and X-ray changes. Ann. Rheum. Dis. 1966;25:1–24. - PMC - PubMed
    1. Felson D.T. Clinical practice. Osteoarthritis of the knee. N. Engl. J. Med. 2006;354:841–848. - PubMed
    1. Felson D.T., Anderson J.J., Meenan R.F. The comparative efficacy and toxicity of second-line drugs in rheumatoid arthritis. Results of two metaanalyses. Arthritis Rheum. 1990;33:1449–1461. - PubMed

Publication types

LinkOut - more resources