Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Dec;81(6):1012-4.
doi: 10.1016/j.mehy.2013.09.018. Epub 2013 Sep 17.

Insulin analogues may accelerate progression of diabetic retinopathy after impairment of inner blood-retinal barrier

Affiliations

Insulin analogues may accelerate progression of diabetic retinopathy after impairment of inner blood-retinal barrier

Abdullah Kaya et al. Med Hypotheses. 2013 Dec.

Abstract

Diabetic retinopathy regresses after spontaneous infarction or surgical ablation of pituitary gland. Growth hormone deficiency seems to be a protective factor for development of diabetic retinopathy in dwarfs. Despite the same glycemic control, development of diabetic retinopathy is significantly higher in pubertal subjects than pre-pubertal subjects. These evidences indicate a strong relationship between growth hormone and progression of diabetic retinopathy. Insulin like growth factor-1 (IGF-1) is the most important mediator of effects of growth hormone (GH). It stimulates IGF-1 receptor. Insulin analogues also stimulate IGF-1 receptor. Therefore insulin analogues may show similar effects like growth hormone and deteriorate diabetic retinopathy. However we suggest that impairment degree of inner blood-retinal barrier should be considered for this claim. We hypothesize that insulin analogues have dual effects (beneficial and worsening) depending on stage of impairment of inner blood-retinal barrier. Insulin analogues protect pericytes and blood-retinal barrier by decreasing blood glucose level. Analogues may pass into the retinal tissue in very low amounts when inner blood-retinal barrier is intact. Therefore, insulin analogues may not deteriorate diabetic retinopathy but also have beneficial effect by protecting blood-retinal barrier at this stage. However, they may pass into the retinal tissue in much more amounts when inner blood-retinal barrier impairs. Analogues may deteriorate cellular composition of retina through stimulation of IGF-1 receptors. A number of different cell types, including glia, retinal pigment epithelial cells and fibroblast-like cells have been identified in diabetic epiretinal tissues. Insulin analogues may cause proliferation in these cells. A type of glial cell named Non-astrocytic Inner Retinal Glia-like (NIRG) cell was identified to be stimulated and proliferate by IGF-1. IGF has been reported to generate traction force in retinal pigment epitelium (RPE) and mullerian cells. Mullerian cells also support inner blood-retinal barrier. Insulin analogues may cause proliferation in glial cells and generate traction force in RPE and mullerian cells by stimulating IGF-1 receptor. These effects of analogues may increase after deterioration of inner blood-retinal barrier and cause structural changes in retinal tissue. Deterioration of cellular structure may contribute to impairment of inner blood-retinal barrier, facilitate anjiogenesis and influence vitreoretinal interface. Therefore we suggest that insulin analogues should be used carefully after impairment of inner blood-retinal barrier. Analogues that bind with lesser affinity to IGF-1 receptor should be chosen after impairment. Pharmacologic agents may be developed to antagonize effect of insulin analogues on IGF-1 receptors.

PubMed Disclaimer

MeSH terms

LinkOut - more resources