Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct 1;8(10):e75883.
doi: 10.1371/journal.pone.0075883. eCollection 2013.

Fire and brimstone: the microbially mediated formation of elemental sulfur nodules from an isotope and major element study in the paleo-Dead Sea

Affiliations

Fire and brimstone: the microbially mediated formation of elemental sulfur nodules from an isotope and major element study in the paleo-Dead Sea

Tom Bishop et al. PLoS One. .

Abstract

We present coupled sulfur and oxygen isotope data from sulfur nodules and surrounding gypsum, as well as iron and manganese concentration data, from the Lisan Formation near the Dead Sea (Israel). The sulfur isotope composition in the nodules ranges between -9 and -11‰, 27 to 29‰ lighter than the surrounding gypsum, while the oxygen isotope composition of the gypsum is constant around 24‰. The constant sulfur isotope composition of the nodule is consistent with formation in an 'open system'. Iron concentrations in the gypsum increase toward the nodule, while manganese concentrations decrease, suggesting a redox boundary at the nodule-gypsum interface during aqueous phase diagenesis. We propose that sulfur nodules in the Lisan Formation are generated through bacterial sulfate reduction, which terminates at elemental sulfur. We speculate that the sulfate-saturated pore fluids, coupled with the low availability of an electron donor, terminates the trithionate pathway before the final two-electron reduction, producing thionites, which then disproportionate to form abundant elemental sulfur.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. The enzymatic steps involved in bacterial sulfate reduction.
Figure 2
Figure 2. Isotope and major ion results from sulfur nodules 1 (left) and 2 (right).
In the top panels we show sulfur isotopes in gypsum (black circles) and elemental sulfur (open circles) and oxygen isotopes in gypsum (black squares). Error bars on the oxygen isotopes in gypsum are based on replicate measurements. In the middle panels we show total iron concentration (stars) and total manganese concentration (diamonds). Photos of the nodules are included at the bottom.
Figure 3
Figure 3. A schematic of the sulfur isotope composition during bacterial sulfate reduction in closed versus open systems.
In closed systems the sulfur isotopes in the reduced product (pyrite or elemental sulfur, for example) may have significant isotope variability as they are growing from a pool that is evolving isotopically with time. In contrast in an open system with constant replenishment of the source of sulfate the isotope composition of the reduced product would not be expected to vary. We use our data to conclude that the sulfur nodules in the Lake Lisan formed in an open system. The symbol εs is the sulfur isotope fractionation during sulfate reduction.
Figure 4
Figure 4. Our hypothesized model for the geochemical environment leading to the formation of the sulfur nodules.
Our precursor gypsum is +19‰ and the elemental sulfur is -8‰; these are the two ‘knowns’ as we are able to measure them today. In theory the pore fluid sulfate would be significantly heavier than the gypsum since this would be the mobile pool from which sulfate is reduced to form the sulfur nodule. Thus the sulfur isotope fractionation could be much larger than the 28‰ difference between the gypsum and the nodule.
Figure 5
Figure 5. A diagram of the crystal proteins and the proposed pathway to make elemental sulfur.
Sulfite is formed during the first two-electron reduction of sulfate within a microbial cell (see Figure 1). Sulfite can be further reduced to sulfide through three two-electron reductions (pathway 1, sulfur species in red boxes). During this, sulfite binds to the DrsA-B and DrsC proteins, where it is sequentially reduced. It has been hypothesized that the DrsC protein plays a particularly important role in the terminal two-electron reduction of elemental sulfur to sulfide. Excess sulfite (blue box) in the cell can further attack S2+ and S0 while they are bound in the DsrA-B-C complex, forming thiosulfates (green boxes). We propose that these thiosulfates are disproportionated (or oxidized) forming elemental sulfur (yellow circles) and sulfite again, allowing for large amounts of elemental sulfur to accumulate (pathway 3). The specific conditions that permit this to happen are the supersaturated sulfate in the pore fluids coupled with low electron donor.

References

    1. Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR et al. (1979) Early oxidation of organic matter in pelagiv sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43: 1075-1090. doi:10.1016/0016-7037(79)90095-4. - DOI
    1. Lovley DR, Philips EJP (1986) Organic-matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51: 683-689. PubMed: 16347032. - PMC - PubMed
    1. Sivan O, Adler M, Pearson A, Gelman F, Bar-Or I, John SG et al. (2011) Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol Oceanogr 56: 1536-1544. doi:10.4319/lo.2011.56.4.1536. - DOI
    1. Jørgensen BB (1982) Mineralization of organic matter in the sea bed – the role of sulfate reduction. Nature 296: 643-645. doi:10.1038/296643a0. - DOI
    1. Kasten S, Jørgensen BB (2000) Sulfate reduction in marine sediments. In Schulz HD, Zabel M, Marine Geochemistry. pp. 263-281.

Publication types

LinkOut - more resources