Neuroimaging-based biomarkers in psychiatry: clinical opportunities of a paradigm shift
- PMID: 24099497
- DOI: 10.1177/070674371305800904
Neuroimaging-based biomarkers in psychiatry: clinical opportunities of a paradigm shift
Abstract
Neuroimaging research has substantiated the functional and structural abnormalities underlying psychiatric disorders but has, thus far, failed to have a significant impact on clinical practice. Recently, neuroimaging-based diagnoses and clinical predictions derived from machine learning analysis have shown significant potential for clinical translation. This review introduces the key concepts of this approach, including how the multivariate integration of patterns of brain abnormalities is a crucial component. We survey recent findings that have potential application for diagnosis, in particular early and differential diagnoses in Alzheimer disease and schizophrenia, and the prediction of clinical response to treatment in depression. We discuss the specific clinical opportunities and the challenges for developing biomarkers for psychiatry in the absence of a diagnostic gold standard. We propose that longitudinal outcomes, such as early diagnosis and prediction of treatment response, offer definite opportunities for progress. We propose that efforts should be directed toward clinically challenging predictions in which neuroimaging may have added value, compared with the existing standard assessment. We conclude that diagnostic and prognostic biomarkers will be developed through the joint application of expert psychiatric knowledge in addition to advanced methods of analysis.
La recherche en neuroimagerie a fourni la preuve des anomalies fonctionnelles et structurelles sous-jacentes des troubles psychiatriques, mais jusqu’ici, elle n’a pas réussi à avoir un impact significatif sur la pratique clinique. Récemment, les diagnostics basés sur la neuroimagerie et les prédictions cliniques tirées d’une analyse d’apprentissage automatique ont démontré un potentiel significatif de traduction clinique. Cette revue présente les concepts clés de cette approche, notamment à quel point l’intégration multivariée des modèles d’anomalies cérébrales est un composant essentiel. Nous passons en revue les résultats récents qui ont des applications potentielles au diagnostic, en particulier, pour les diagnostics précoces et différentiels de la maladie d’Alzheimer et de la schizophrénie, et la prédiction de la réponse clinique au traitement de la dépression. Nous discutons des possibilités cliniques spécifiques et des défis de développement de biomarqueurs pour la psychiatrie en l’absence de standard de référence diagnostique. Nous proposons que les résultats longitudinaux, comme le diagnostic précoce et la prédiction de la réponse au traitement, offrent des possibilités définitives de progrès. Nous proposons que des efforts soient dirigés vers des prédictions cliniquement difficiles dans lesquelles la neuroimagerie peut avoir une valeur ajoutée, comparée à l’évaluation standard existante. Nous concluons que les biomarqueurs diagnostiques et pronostiques seront développés par l’application conjointe du savoir psychiatrique expert et de méthodes d’analyse avancées.
Keywords: Alzheimer; biomarkers; depression; machine learning; magnetic resonance imaging; neuroimaging; personalized; schizophrenia.
Similar articles
-
Making Individual Prognoses in Psychiatry Using Neuroimaging and Machine Learning.Biol Psychiatry Cogn Neurosci Neuroimaging. 2018 Sep;3(9):798-808. doi: 10.1016/j.bpsc.2018.04.004. Epub 2018 Apr 22. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018. PMID: 29789268 Review.
-
[Artificial intelligence in psychiatry: predictive value of characteristics on MR imaging of the brain].Ned Tijdschr Geneeskd. 2021 Mar 25;165:D5434. Ned Tijdschr Geneeskd. 2021. PMID: 33793127 Dutch.
-
Neuroimaging and psychiatry: the long road from bench to bedside.Hastings Cent Rep. 2014 Mar-Apr;Spec No:S31-6. doi: 10.1002/hast.296. Hastings Cent Rep. 2014. PMID: 24634083
-
Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research.Exp Neurol. 2021 May;339:113608. doi: 10.1016/j.expneurol.2021.113608. Epub 2021 Jan 26. Exp Neurol. 2021. PMID: 33513353 Review.
-
Progress in psychoradiology, the clinical application of psychiatric neuroimaging.Br J Radiol. 2019 Sep;92(1101):20181000. doi: 10.1259/bjr.20181000. Epub 2019 Jun 21. Br J Radiol. 2019. PMID: 31170803 Free PMC article. Review.
Cited by
-
Neuroimaging Correlates of Depression-Implications to Clinical Practice.Front Psychiatry. 2019 Oct 1;10:703. doi: 10.3389/fpsyt.2019.00703. eCollection 2019. Front Psychiatry. 2019. PMID: 31632306 Free PMC article. Review.
-
Abnormal fronto-striatal activation as a marker of threshold and subthreshold Bulimia Nervosa.Hum Brain Mapp. 2018 Apr;39(4):1796-1804. doi: 10.1002/hbm.23955. Epub 2018 Jan 10. Hum Brain Mapp. 2018. PMID: 29322687 Free PMC article.
-
Development of an Al-Based Web Diagnostic System for Phenotyping Psychiatric Disorders.Front Psychiatry. 2020 Nov 5;11:542394. doi: 10.3389/fpsyt.2020.542394. eCollection 2020. Front Psychiatry. 2020. PMID: 33250789 Free PMC article.
-
Candidate Biological Markers for Social Anxiety Disorder: A Systematic Review.Int J Mol Sci. 2023 Jan 3;24(1):835. doi: 10.3390/ijms24010835. Int J Mol Sci. 2023. PMID: 36614278 Free PMC article.
-
A Systematic Literature Review on the Application of Machine-Learning Models in Behavioral Assessment of Autism Spectrum Disorder.J Pers Med. 2021 Apr 14;11(4):299. doi: 10.3390/jpm11040299. J Pers Med. 2021. PMID: 33919878 Free PMC article. Review.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical