Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 6:21 Suppl 3:A558-75.
doi: 10.1364/OE.21.00A558.

Efficient light management in vertical nanowire arrays for photovoltaics

Free article

Efficient light management in vertical nanowire arrays for photovoltaics

Nicklas Anttu et al. Opt Express. .
Free article

Abstract

Vertical arrays of direct band gap III-V semiconductor nanowires (NWs) hold the prospect of cheap and efficient next-generation photovoltaics, and guidelines for successful light-management are needed. Here, we use InP NWs as a model system and find, through electrodynamic modeling, general design principles for efficient absorption of sun light in nanowire arrays by systematically varying the nanowire diameter, the nanowire length, and the array period. Most importantly, we discover the existence of specific band-gap dependent diameters, 170 nm and 410 nm for InP, for which the absorption of sun light in the array is optimal, irrespective of the nanowire length. At these diameters, the individual InP NWs of the array absorb light strongly for photon energies just above the band gap energy due to a diameter-tunable nanophotonic resonance, which shows up also for other semiconductor materials of the NWs. Furthermore, we find that for maximized absorption of sun light, the optimal period of the array increases with nanowire length, since this decreases the insertion reflection losses.

PubMed Disclaimer

Publication types

LinkOut - more resources