Extracellular K+ activity changes related to electroretinogram components. II. Rabbit (E-type) retinas
- PMID: 2410539
- PMCID: PMC2215787
- DOI: 10.1085/jgp.85.6.911
Extracellular K+ activity changes related to electroretinogram components. II. Rabbit (E-type) retinas
Abstract
Electroretinogram (ERG) and extracellular potassium activity (K+o) measurements were carried out in isolated superfused rabbit eyecup preparations under control conditions and during the application of pharmacological agents that selectively modify the light-responsive retinal network. Light-evoked K+o changes in the rabbit (E-type) retina resemble those previously described in amphibian (I-type) retinas. Different components of the light-evoked K+o changes can be distinguished on the bases of retinal depth, V vs. log I properties, and their responses to pharmacological agents. We find two separable sources of light-evoked increases in extracellular K+: a proximal source and a distal source. The properties of the distal light-evoked K+o increase are consistent with the hypothesis that it initiates a K+-mediated current through Müller cells that is detected as the primary voltage of the electroretinographic b-wave. These experiments also support previous studies indicating that both the corneal-positive component of c-wave and the corneal-negative slow PIII potential result from K+-mediated influences on, respectively, the retinal pigment epithelium and Müller cells.
Similar articles
-
Extracellular K+ activity changes related to electroretinogram components. I. Amphibian (I-type) retinas.J Gen Physiol. 1985 Jun;85(6):885-909. doi: 10.1085/jgp.85.6.885. J Gen Physiol. 1985. PMID: 3926945 Free PMC article.
-
Light-evoked increases in [K+]o in proximal portion of the dark-adapted cat retina.J Neurophysiol. 1989 Jun;61(6):1233-43. doi: 10.1152/jn.1989.61.6.1233. J Neurophysiol. 1989. PMID: 2746323
-
M-wave of the toad electroretinogram.J Neurophysiol. 1991 Dec;66(6):1927-40. doi: 10.1152/jn.1991.66.6.1927. J Neurophysiol. 1991. PMID: 1812226
-
Intraretinal study of cat electroretinogram during retinal ischemia-reperfusion with extracellular K+ concentration microelectrodes.Invest Ophthalmol Vis Sci. 1994 Feb;35(2):656-63. Invest Ophthalmol Vis Sci. 1994. PMID: 8113017
-
Sources and sinks of light-evoked delta [K+]o in the vertebrate retina.Can J Physiol Pharmacol. 1987 May;65(5):1009-17. doi: 10.1139/y87-160. Can J Physiol Pharmacol. 1987. PMID: 3304587 Review.
Cited by
-
Efficient K+ buffering by mammalian retinal glial cells is due to cooperation of specialized ion channels.Pflugers Arch. 1988 Jun;411(6):654-60. doi: 10.1007/BF00580862. Pflugers Arch. 1988. PMID: 2457869
-
A circadian clock and light/dark adaptation differentially regulate adenosine in the mammalian retina.J Neurosci. 2005 Jan 5;25(1):215-22. doi: 10.1523/JNEUROSCI.3138-04.2005. J Neurosci. 2005. PMID: 15634784 Free PMC article.
-
Glial and neuronal dysfunction in streptozotocin-induced diabetic rats.J Ocul Biol Dis Infor. 2011 Jun;4(1-2):42-50. doi: 10.1007/s12177-011-9069-3. Epub 2011 Dec 31. J Ocul Biol Dis Infor. 2011. PMID: 23275800 Free PMC article.
-
Concentration-dependent effects of dopamine on the direct current electroretinogram of pigmented rabbits during prolonged intermittent recording.Doc Ophthalmol. 2003 Mar;106(2):161-9. doi: 10.1023/a:1022523300417. Doc Ophthalmol. 2003. PMID: 12678281
-
Interpretation of the filtered 100- to 1000-Hz electroretinogram.Doc Ophthalmol. 1994;86(1):33-46. doi: 10.1007/BF01224626. Doc Ophthalmol. 1994. PMID: 7956684
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical