Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct 30;135(43):16074-7.
doi: 10.1021/ja4096472. Epub 2013 Oct 16.

Simple catalytic mechanism for the direct coupling of α-carbonyls with functionalized amines: a one-step synthesis of Plavix

Affiliations

Simple catalytic mechanism for the direct coupling of α-carbonyls with functionalized amines: a one-step synthesis of Plavix

Ryan W Evans et al. J Am Chem Soc. .

Abstract

The direct α-amination of ketones, esters, and aldehydes has been accomplished via copper catalysis. In the presence of catalytic copper(II) bromide, a diverse range of carbonyl and amine substrates undergo fragment coupling to produce synthetically useful α-amino-substituted motifs. The transformation is proposed to proceed via a catalytically generated α-bromo carbonyl species; nucleophilic displacement of the bromide by the amine then delivers the α-amino carbonyl adduct while the catalyst is reconstituted. The practical value of this transformation is highlighted through one-step syntheses of two high-profile pharmaceutical agents, Plavix and amfepramone.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Medicinal use, strategies towards α-amino carbonyls.
Scheme 1
Scheme 1
Design of Cu(II)-catalyzed carbonyl–amine coupling.

References

    1. Meltzer PC, Butler D, Deschamps JR, Madras BK. J. Med. Chem. 2006;49:1420–1432. - PMC - PubMed
    2. Carrol FI, Blough BE, Abraham P, Mills AC, Holleman JA, Wolchenhauer SA, Decker AM, Landavazo AK, McElroy T, Navarro HA, Gatch MB, Forster MJ. J. Med. Chem. 2009;52:6768–6781. - PubMed
    3. Bouteiller C, Becerril-Ortega J, Marchand P, Nicole O, Barre L, Buisson A, Perrio C. Org. Biomol. Chem. 2010;8:1111–1120. - PubMed
    4. Meyers MC, Wang J-L, Iera JA, Bang J-K, Hara T, Saito S, Zambetti GP, Appella DH. J. Am. Chem. Soc. 2005;127:6152–6153. - PubMed
    5. Ando R, Sakaki T, Morinaka Y, Takahashi C, Tamao Y. 1994. EP 603769 A1 19940629. - PubMed
    1. For a review of such methods, see: Janey JM. Angew. Chem. Int. Ed. 2005;44:4292–3300. Vilaivan T, Bhanthumnavin W. Molecules. 2010;15:917–958.

    1. Matsuda N, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2012;51:11827–11831. - PubMed
    2. Miura T, Morimoto M, Murakami M. Org. Lett. 2012;14:5214–5217. - PubMed
    3. Wei Y, Lin S, Liang F. Org. Lett. 2012;14:4202–4205. - PubMed
    4. Lamani M, Prabhu KR. Chem. Eur. J. 2012;18:14638–14642. - PubMed
    5. Tian J-S, Loh T-P. Chem. Commun. 2011;47:5458–5460. - PubMed
    6. Tian J-S, Ng KWJ, Wong J-R, Loh T-P. Angew. Chem. Int. Ed. 2012;51:9105–9109. - PubMed
    1. Guram AS, Rennels RA, Buchwald SL. Angew. Chem. Int. Ed. 1995;34:1348–1350.
    2. Louie J, Hartwig JF. Tetrahedron Lett. 1995;36:3609–3612.
    1. Chan DMT, Monaco KL, Wang RP, Winters MP. Tetrahedron Lett. 1998;39:2933.
    2. Lam P, Clark CG, Saubern S, Adams J, Winters MP, Chan DM, Combs T, A. Tetrahedron Lett. 1998;39:2941.
    3. Lam P, Vincent G, Bonne D, Clark CG. Tetrahedron Lett. 2003;44:4927.

Publication types