Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Nov 28;15(44):19232-41.
doi: 10.1039/c3cp52865k.

NaYF4 nanocrystals with TOPO ligands: synthesis-dependent structural and luminescent properties

Affiliations

NaYF4 nanocrystals with TOPO ligands: synthesis-dependent structural and luminescent properties

Mateusz Banski et al. Phys Chem Chem Phys. .

Abstract

A comprehensive characterization of NaYF4 nanocrystals synthesized in trioctylphosphine oxide has been reported in order to present an effective method of monodisperse, small, hexagonal nanocrystal synthesis in a high boiling organic solvent via a co-thermolysis pathway. We observed the influence of temperature, Na/Y precursors ratio and time of the synthesis on the nanocrystals size, shape and crystal structure. For that purpose, we characterized the structure of as-synthesized nanocrystals by X-ray diffraction and transmission electron microscopy. Moreover, all nanocrystals were doped with Eu(3+) ions, which were used as an optical crystal field probe. We applied photoluminescence, PL excitation and absorbance spectra to determine the influence of crystal symmetry, surface to volume ratio and ligands on the optical properties of doped Eu(3+) ions. It was found that trioctylphosphine oxide reduces the free-energy barrier and stimulates the NaYF4 crystallization in the hexagonal phase, even at relatively low temperature. A similar effect was observed when the excess of sodium trifluoroacetate precursors was used. Moreover, the presented nanocrystal evolution within synthesis time confirmed that at suitable conditions NaYF4 crystallized in the hexagonal phase within less than 5 min. Optical spectroscopy investigations confirmed the high quality of small β-NaYF4:Eu(3+) nanocrystals, which are promising candidates for e.g. optical markers in the visible wavelength range.

PubMed Disclaimer

Publication types

LinkOut - more resources