Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Dec;98(12):4872-81.
doi: 10.1210/jc.2013-2098. Epub 2013 Oct 9.

Disuse impairs the muscle protein synthetic response to protein ingestion in healthy men

Affiliations

Disuse impairs the muscle protein synthetic response to protein ingestion in healthy men

Benjamin T Wall et al. J Clin Endocrinol Metab. 2013 Dec.

Abstract

Background: Disuse leads to rapid skeletal muscle atrophy, which brings about numerous negative health consequences. Muscle disuse atrophy is, at least in part, attributed to a decline in basal (postabsorptive) muscle protein synthesis rates. However, it remains to be determined whether muscle disuse also impairs the muscle protein synthetic response to dietary protein ingestion.

Purpose: We assessed muscle protein synthesis rates after protein ingestion before and after a period of disuse in humans.

Methods: Twelve healthy young (24 ± 1 year) men underwent a 14-day period of one-legged knee immobilization by way of a full leg cast. Before and after the immobilization period, quadriceps cross-sectional area, muscle strength, skeletal muscle protein synthesis rates, and associated im (intramuscular) molecular signaling were assessed. Continuous infusions of l-[ring-²H₅]phenylalanine were applied to assess mixed-muscle protein fractional synthetic rates after the ingestion of 20 g dietary protein.

Results: Immobilization led to an 8.4% ± 2.8% (P < .001) and 22.9% ± 2.6% (P < .001) decrease in quadriceps muscle cross-sectional area and strength, respectively. Immobilization resulted in a 31% ± 12% reduction in postprandial muscle protein synthesis rates (from 0.046% ± 0.004% to 0.032% ± 0.006% per hour; P < .05). These findings were observed without any discernible changes in the skeletal muscle phosphorylation status of mammalian target of rapamycin or p70 ribosomal protein S6 kinase.

Conclusions: A short period of muscle disuse impairs the muscle protein synthetic response to dietary protein intake in vivo in healthy young men. Thus, anabolic resistance to protein ingestion contributes significantly to the loss of muscle mass that is observed during disuse.

PubMed Disclaimer

MeSH terms