Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013:2013:5053-6.
doi: 10.1109/EMBC.2013.6610684.

Assessing sample entropy of physiological signals by the norm component matrix algorithm: application on muscular signals during isometric contraction

Assessing sample entropy of physiological signals by the norm component matrix algorithm: application on muscular signals during isometric contraction

Paolo Castiglioni et al. Annu Int Conf IEEE Eng Med Biol Soc. 2013.

Abstract

Sample Entropy (SampEn) is a popular method for assessing the unpredictability of biological signals. Its calculation requires to preliminarily set the tolerance threshold r and the embedding dimension m. Even if most studies select m=2 and r=0.2 times the signal standard deviation, this choice is somewhat arbitrary. Effects of different r and m values on SampEn have been rarely assessed, because of the high computational burden of this task. Recently, however, a fast algorithm for estimating correlation sums (Norm Component Matrix, NCM) has been proposed that allows calculating SampEn quickly over wide ranges of r and m. The aim of our work is to describe the structure of SampEn of physiological signals with different complex dynamics as a function of m and r and in relation to the correlation sum. In particular, we investigate whether the criterion of "maximum entropy" for selecting r previously proposed for Approximate Entropy, also applies to SampEn; and whether information from correlation sums provides indications for the choice of r and m. For this aim we applied the NCM algorithm on electromyographic and mechanomyographic signals during isometric muscle contraction, estimating SampEn over wide ranges of r (0.01 ≤ r ≤ 5) and m (from 1 to 11). Results indicate that the "maximum entropy" criterion to select r in Approximate Entropy cannot be applied to SampEn. However, the analysis of correlation sums alternatively suggests to choose r that at any m maximizes the number of "escaping vectors", i.e., data points effectively contributing to the SampEn estimation.

PubMed Disclaimer

Publication types

LinkOut - more resources