Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Dec;40(12):929-36.
doi: 10.1111/1440-1681.12177.

Aberrant Rac1-mineralocorticoid receptor pathways in salt-sensitive hypertension

Affiliations
Review

Aberrant Rac1-mineralocorticoid receptor pathways in salt-sensitive hypertension

Wakako Kawarazaki et al. Clin Exp Pharmacol Physiol. 2013 Dec.

Abstract

According to Guyton's model, impaired renal sodium excretion plays a key role in the increased salt sensitivity of blood pressure (BP). Several factors contribute to impaired renal sodium excretion, including the sympathetic nervous system, the renin-angiotensin system and aldosterone. Accumulating evidence suggests that abnormalities in aldosterone and its receptor (i.e. the mineralocorticoid receptor (MR)) are involved in the development of salt-sensitive (SS) hypertension. Patients with metabolic syndrome often exhibit hyperaldosteronism and are susceptible to SS hypertension. Aldosterone secretion from the adrenal glands is not suppressed in obese hypertensive rats fed a high-salt diet because of the abundant production of adipocyte-derived aldosterone-releasing factors, which are independent of the negative feedback regulation of aldosterone secretion by the renin-angiotensin-aldosterone system. Increased plasma aldosterone levels lead to SS hypertension via MR activation in the kidney. Renal MR activity is increased in Dahl salt-sensitive rats fed a high-salt diet, despite the appropriate suppression of plasma aldosterone levels. In this rat strain, activation of MR in the distal nephron causes salt-induced hypertension. This paradoxical response of the MR to salt loading can be attributed to activation of Rac1, a small GTPase. In the presence of aldosterone, activated Rac1 synergistically and directly activates MR in a ligand-independent manner. Thus, Rac1 activation in the kidney determines the salt sensitivity of BP. Together, the available evidence suggests that the aberrant Rac1-MR pathway plays a key role in the development of SS hypertension.

Keywords: Rac1; aldosterone; aldosterone-releasing factors; kidney; metabolic syndrome; mineralocorticoid receptor; obesity; salt sensitivity of blood pressure; salt-sensitive hypertension.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources