Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Feb 15;113(3):281-97.
doi: 10.1016/j.prevetmed.2013.09.006. Epub 2013 Sep 23.

Making valid causal inferences from observational data

Affiliations
Review

Making valid causal inferences from observational data

Wayne Martin. Prev Vet Med. .

Abstract

The ability to make strong causal inferences, based on data derived from outside of the laboratory, is largely restricted to data arising from well-designed randomized control trials. Nonetheless, a number of methods have been developed to improve our ability to make valid causal inferences from data arising from observational studies. In this paper, I review concepts of causation as a background to counterfactual causal ideas; the latter ideas are central to much of current causal theory. Confounding greatly constrains causal inferences in all observational studies. Confounding is a biased measure of effect that results when one or more variables, that are both antecedent to the exposure and associated with the outcome, are differentially distributed between the exposed and non-exposed groups. Historically, the most common approach to control confounding has been multivariable modeling; however, the limitations of this approach are discussed. My suggestions for improving causal inferences include asking better questions (relates to counterfactual ideas and "thought" trials); improving study design through the use of forward projection; and using propensity scores to identify potential confounders and enhance exchangeability, prior to seeing the outcome data. If time-dependent confounders are present (as they are in many longitudinal studies), more-advanced methods such as marginal structural models need to be implemented. Tutorials and examples are cited where possible.

Keywords: Boosted regression; Causal diagram; Causal guidelines; Causal inference; Cause; Component cause; Counterfactual; Critical appraisal; Forward projection; Instrument variable; Marginal structural model; Multivariable model; Propensity score.

PubMed Disclaimer

MeSH terms

LinkOut - more resources