TRPC4 inactivation confers a survival benefit in severe pulmonary arterial hypertension
- PMID: 24113457
- PMCID: PMC5745549
- DOI: 10.1016/j.ajpath.2013.08.016
TRPC4 inactivation confers a survival benefit in severe pulmonary arterial hypertension
Abstract
Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary arterial pressure with lumen-occluding neointimal and plexiform lesions. Activation of store-operated calcium entry channels promotes contraction and proliferation of lung vascular cells. TRPC4 is a ubiquitously expressed store-operated calcium entry channel, but its role in PAH is unknown. We tested the hypothesis that TRPC4 promotes pulmonary arterial constriction and occlusive remodeling, leading to right ventricular failure in severe PAH. Severe PAH was induced in Sprague-Dawley rats and in wild-type and TRPC4-knockout Fischer 344 rats by a single subcutaneous injection of SU5416 [SU (semaxanib)], followed by hypoxia exposure (Hx; 10% O2) for 3 weeks and then a return to normoxia (Nx; 21% O2) for 3 to 10 additional weeks (SU/Hx/Nx). Although rats of both backgrounds exhibited indistinguishable pulmonary hypertensive responses to SU/Hx/Nx, Fischer 344 rats died within 6 to 8 weeks. Normoxic and hypertensive TRPC4-knockout rats recorded hemodynamic parameters similar to those of their wild-type littermates. However, TRPC4 inactivation conferred a striking survival benefit, due in part to preservation of cardiac output. Histological grading of vascular lesions revealed a reduction in the density of severely occluded small pulmonary arteries and in the number of plexiform lesions in TRPC4-knockout rats. TRPC4 inactivation therefore provides a survival benefit in severe PAH, associated with a decrease in the magnitude of occlusive remodeling.
Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Figures






Similar articles
-
Endothelial hyperpermeability in severe pulmonary arterial hypertension: role of store-operated calcium entry.Am J Physiol Lung Cell Mol Physiol. 2016 Sep 1;311(3):L560-9. doi: 10.1152/ajplung.00057.2016. Epub 2016 Jul 15. Am J Physiol Lung Cell Mol Physiol. 2016. PMID: 27422996 Free PMC article.
-
TRPC4 aggravates hypoxic pulmonary hypertension by promoting pulmonary endothelial cell apoptosis.Free Radic Biol Med. 2024 Jul;219:141-152. doi: 10.1016/j.freeradbiomed.2024.04.224. Epub 2024 Apr 16. Free Radic Biol Med. 2024. PMID: 38636714
-
Transient Receptor Potential Channel 4 Encodes a Vascular Permeability Defect and High-Frequency Ca(2+) Transients in Severe Pulmonary Arterial Hypertension.Am J Pathol. 2016 Jun;186(6):1701-9. doi: 10.1016/j.ajpath.2016.02.002. Epub 2016 Apr 12. Am J Pathol. 2016. PMID: 27083517 Free PMC article.
-
The effects of antiangiogenic compound SU5416 in a rat model of pulmonary arterial hypertension.Respiration. 2011;81(3):253-61. doi: 10.1159/000322011. Epub 2010 Nov 30. Respiration. 2011. PMID: 21116108 Review.
-
The Role of Regulatory T Cells in Pulmonary Arterial Hypertension.Front Immunol. 2021 Aug 19;12:684657. doi: 10.3389/fimmu.2021.684657. eCollection 2021. Front Immunol. 2021. PMID: 34489935 Free PMC article. Review.
Cited by
-
Treasure troves of pharmacological tools to study transient receptor potential canonical 1/4/5 channels.Br J Pharmacol. 2019 Apr;176(7):832-846. doi: 10.1111/bph.14578. Epub 2019 Mar 6. Br J Pharmacol. 2019. PMID: 30656647 Free PMC article. Review.
-
Endothelial Cell Reactive Oxygen Species and Ca2+ Signaling in Pulmonary Hypertension.Adv Exp Med Biol. 2017;967:299-314. doi: 10.1007/978-3-319-63245-2_18. Adv Exp Med Biol. 2017. PMID: 29047094 Free PMC article. Review.
-
Biventricular diastolic dysfunction, thrombocytopenia, and red blood cell macrocytosis in experimental pulmonary arterial hypertension.Pulm Circ. 2020 May 26;10(2):2045894020908787. doi: 10.1177/2045894020908787. eCollection 2020 Apr-Jun. Pulm Circ. 2020. PMID: 32518619 Free PMC article.
-
Development of an endothelial cell-restricted transgenic reporter rat: a resource for physiological studies of vascular biology.Am J Physiol Heart Circ Physiol. 2020 Aug 1;319(2):H349-H358. doi: 10.1152/ajpheart.00276.2020. Epub 2020 Jun 26. Am J Physiol Heart Circ Physiol. 2020. PMID: 32589443 Free PMC article.
-
Mechanosensitive channels in lung disease.Front Physiol. 2023 Nov 15;14:1302631. doi: 10.3389/fphys.2023.1302631. eCollection 2023. Front Physiol. 2023. PMID: 38033335 Free PMC article. Review.
References
-
- Simonneau G., Robbins I.M., Beghetti M., Channick R.N., Delcroix M., Denton C.P., Elliott C.G., Gaine S.P., Gladwin M.T., Jing Z.C., Krowka M.J., Langleben D., Nakanishi N., Souza R. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S43–S54. - PubMed
-
- McLaughlin V.V., Presberg K.W., Doyle R.L., Abman S.H., McCrory D.C., Fortin T., Ahearn G. Prognosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest. 2004;126(1 Suppl):78S–92S. - PubMed
-
- Sitbon O., Humbert M., Jaïs X., Ioos V., Hamid A.M., Provencher S., Garcia G., Parent F., Hervé P., Simonneau G. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation. 2005;111:3105–3111. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical