Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct;6(10):1973-82.
doi: 10.1002/cssc.201300208. Epub 2013 Sep 23.

The particle size dependence of the oxygen reduction reaction for carbon-supported platinum and palladium

Affiliations

The particle size dependence of the oxygen reduction reaction for carbon-supported platinum and palladium

A Anastasopoulos et al. ChemSusChem. 2013 Oct.

Abstract

Model carbon supported Pt and Pd electrocatalysts have been prepared using a high-throughput physical vapor deposition method. For Pt, metal particle sizes are controlled between 1.5-5.5 nm over 100 electrodes of an electrochemical screening chip, allowing the oxygen reduction reaction (ORR) activity of the catalysts to be determined simultaneously. The ORR-specific current density is observed to increase with increasing particle diameter up to approximately 4 nm, at which point the activity begins to level off. The reduction in ORR activity for particles below 4 nm is accompanied by a concomitant increase in the overpotential for surface reduction. The resulting mass activity exhibits a maximum for particles with diameters of approximately 3.5 nm. These results are consistent with results published recently for high area carbon-supported Pt catalysts. For Pd particles, both the specific current density and the mass-specific activity for the ORR are observed to increase with increasing particle diameter, with no distinct optimum observed. The implications for the optimization of Pt- or Pd-based ORR catalysts for proton exchange membrane fuel cell (PEMFC) applications are discussed.

Keywords: high-throughput; oxygen reduction reaction; palladium; particle size dependence; platinum.

PubMed Disclaimer

Publication types

LinkOut - more resources