Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Nov;37(8):511-9.
doi: 10.3109/03091902.2013.837530. Epub 2013 Oct 14.

Automated EEG signal analysis for identification of epilepsy seizures and brain tumour

Affiliations

Automated EEG signal analysis for identification of epilepsy seizures and brain tumour

M Sharanreddy et al. J Med Eng Technol. 2013 Nov.

Abstract

Abstract Electroencephalography (EEG) is a clinical test which records neuro-electrical activities generated by brain structures. EEG test results used to monitor brain diseases such as epilepsy seizure, brain tumours, toxic encephalopathies infections and cerebrovascular disorders. Due to the extreme variation in the EEG morphologies, manual analysis of the EEG signal is laborious, time consuming and requires skilled interpreters, who by the nature of the task are prone to subjective judegment and error. Further, manual analysis of the EEG results often fails to detect and uncover subtle features. This paper proposes an automated EEG analysis method by combining digital signal processing and neural network techniques, which will remove error and subjectivity associated with manual analysis and identifies the existence of epilepsy seizure and brain tumour diseases. The system uses multi-wavelet transform for feature extraction in which an input EEG signal is decomposed in a sub-signal. Irregularities and unpredictable fluctuations present in the decomposed signal are measured using approximate entropy. A feed-forward neural network is used to classify the EEG signal as a normal, epilepsy or brain tumour signal. The proposed technique is implemented and tested on data of 500 EEG signals for each disease. Results are promising, with classification accuracy of 98% for normal, 93% for epilepsy and 87% for brain tumour. Along with classification, the paper also highlights the EEG abnormalities associated with brain tumour and epilepsy seizure.

PubMed Disclaimer

LinkOut - more resources