Exogenous ATP enhances calcium influx in intact thymocytes
- PMID: 2413120
Exogenous ATP enhances calcium influx in intact thymocytes
Abstract
Recent observations have indicated that exogenous adenosine triphosphate (ATP) may influence lymphocyte functions such as proliferation and cytoxicity. Here we report a novel activity of extracellular ATP--it specifically increases Ca2+ uptake in murine lymphocytes. ATP added to thymocytes increases the rate of [45Ca2+] uptake by up to 20-fold. The increased rate is seen with ATP concentrations as low as 500 microM and is half-maximal at approximately 2 mM ATP. The magnitude of stimulation by ATP is dependent on Mg2+ concentration, and ATP-Mg2+ complex is probably the true activator. Of the high-energy phosphate-containing compounds tested, including deoxy-ATP, only GTP showed a modest stimulation of calcium uptake. ADP, AMP, cyclic AMP, and adenosine did not significantly increase calcium uptake. Cellular integrity as indicated by trypan blue exclusion and ethidium bromide/acridine orange staining was unaffected by ATP. Ca2+ influx is the major mode of action of ATP in raising intrathymocyte Ca2+ levels, because neither the Ca2+ efflux nor the [45Ca2+]-Ca2+ exchange was significantly altered in the presence of ATP. Verapamil, a Ca2+ channel blocking agent, could not prevent the ATP effect, suggesting that ATP may be acting by a mechanism other than the voltage-dependent Ca2+ channel. An analysis of intracellular and extracellular ATP levels by chemiluminescence assay indicated no significant ATP entry into intact lymphocytes. Also, ATP added to the medium containing thymocytes was destroyed (approximately 50% by 20 min). The nonhydrolyzable ATP analogs, AMPPCP and AMPPNP, were unable to stimulate a significant amount of Ca2+ uptake, suggesting the involvement of a cell surface phosphotransferase activity. This was supported by the demonstration of a threefold to fivefold increase in the labeling of protein and phospholipid fractions obtained from intact thymocytes exposed to [gamma 32P]ATP for 30 min. Ca2+ is believed to play an important role in a variety of lymphocyte functions, including mitogenesis and natural killer cell activity. The data herein thus provide a potential mechanism for the action of exogenous ATP on these lymphocyte functions.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Miscellaneous