Visualizing genomic information across chromosomes with PhenoGram
- PMID: 24131735
- PMCID: PMC4015356
- DOI: 10.1186/1756-0381-6-18
Visualizing genomic information across chromosomes with PhenoGram
Abstract
Background: With the abundance of information and analysis results being collected for genetic loci, user-friendly and flexible data visualization approaches can inform and improve the analysis and dissemination of these data. A chromosomal ideogram is an idealized graphic representation of chromosomes. Ideograms can be combined with overlaid points, lines, and/or shapes, to provide summary information from studies of various kinds, such as genome-wide association studies or phenome-wide association studies, coupled with genomic location information. To facilitate visualizing varied data in multiple ways using ideograms, we have developed a flexible software tool called PhenoGram which exists as a web-based tool and also a command-line program.
Results: With PhenoGram researchers can create chomosomal ideograms annotated with lines in color at specific base-pair locations, or colored base-pair to base-pair regions, with or without other annotation. PhenoGram allows for annotation of chromosomal locations and/or regions with shapes in different colors, gene identifiers, or other text. PhenoGram also allows for creation of plots showing expanded chromosomal locations, providing a way to show results for specific chromosomal regions in greater detail. We have now used PhenoGram to produce a variety of different plots, and provide these as examples herein. These plots include visualization of the genomic coverage of SNPs from a genotyping array, highlighting the chromosomal coverage of imputed SNPs, copy-number variation region coverage, as well as plots similar to the NHGRI GWA Catalog of genome-wide association results.
Conclusions: PhenoGram is a versatile, user-friendly software tool fostering the exploration and sharing of genomic information. Through visualization of data, researchers can both explore and share complex results, facilitating a greater understanding of these data.
Figures









References
-
- Ramos PS, Criswell LA, Moser KL, Comeau ME, Williams AH, Pajewski NM, Chung SA, Graham RR, Zidovetzki R, Kelly JA, Kaufman KM, Jacob CO, Vyse TJ, Tsao BP, Kimberly RP, Gaffney PM, Alarcón-Riquelme ME, Harley JB, Langefeld CD. International Consortium on the Genetics of Systemic Erythematosus. A comprehensive analysis of shared loci between systemic lupus erythematosus (SLE) and sixteen autoimmune diseases reveals limited genetic overlap. Plos Genet. 2011;6:e1002406. - PMC - PubMed
-
- Grossman SR, Andersen KG, Shlyakhter I, Tabrizi S, Winnicki S, Yen A, Park DJ, Griesemer D, Karlsson EK, Wong SH, Cabili M, Adegbola RA, Bamezai RNK, Hill AVS, Vannberg FO, Rinn JL, Lander ES, Schaffner SF, Sabeti PC. 1000 Genomes Project. Identifying recent adaptations in large-scale genomic data. Cell. 2013;6:703–713. - PMC - PubMed
-
- Pendergrass SA, Brown-Gentry K, Dudek SM, Torstenson ES, Ambite JL, Avery CL, Buyske S, Cai C, Fesinmeyer MD, Haiman C, Heiss G, Hindorff LA, Hsu C-N, Jackson RD, Kooperberg C, Le Marchand L, Lin Y, Matise TC, Moreland L, Monroe K, Reiner AP, Wallace R, Wilkens LR, Crawford DC, Ritchie MD. The use of phenome-wide association studies (PheWAS) for exploration of novel genotype-phenotype relationships and pleiotropy discovery. Genet Epidemiol. 2011;6:410–422. - PMC - PubMed
-
- Pendergrass SA, Brown-Gentry K, Dudek S, Frase A, Torstenson ES, Goodloe R, Ambite JL, Avery CL, Buyske S, Bůžková P, Deelman E, Fesinmeyer MD, Haiman CA, Heiss G, Hindorff LA, Hsu C-N, Jackson RD, Kooperberg C, Le Marchand L, Lin Y, Matise TC, Monroe KR, Moreland L, Park SL, Reiner A, Wallace R, Wilkens LR, Crawford DC, Ritchie MD. Phenome-Wide Association Study (PheWAS) for Detection of Pleiotropy within the Population Architecture using Genomics and Epidemiology (PAGE) Network. Plos Genet. 2013;6:e1003087. - PMC - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources