Traveling wave magnetic particle imaging
- PMID: 24132006
- DOI: 10.1109/TMI.2013.2285472
Traveling wave magnetic particle imaging
Abstract
Most 3-D magnetic particle imaging (MPI) scanners currently use permanent magnets to create the strong gradient field required for high resolution MPI. However, using permanent magnets limits the field of view (FOV) due to the large amount of energy required to move the field free point (FFP) from the center of the scanner. To address this issue, an alternative approach called "Traveling Wave MPI" is here presented. This approach employs a novel gradient system, the dynamic linear gradient array, to cover a large FOV while dynamically creating a strong magnetic gradient. The proposed design also enables the use of a so-called line-scanning mode, which simplifies the FFP trajectory to a linear path through the 3-D volume. This results in simplified mathematics, which facilitates the image reconstruction.
Similar articles
-
Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging.IEEE Trans Med Imaging. 2015 Feb;34(2):644-51. doi: 10.1109/TMI.2014.2364891. Epub 2014 Oct 24. IEEE Trans Med Imaging. 2015. PMID: 25350924
-
Trajectory analysis for field free line magnetic particle imaging.Med Phys. 2019 Apr;46(4):1592-1607. doi: 10.1002/mp.13411. Epub 2019 Feb 22. Med Phys. 2019. PMID: 30695100
-
Axially elongated field-free point data acquisition in magnetic particle imaging.IEEE Trans Med Imaging. 2015 Feb;34(2):381-7. doi: 10.1109/TMI.2014.2357077. Epub 2014 Sep 11. IEEE Trans Med Imaging. 2015. PMID: 25222946
-
Magnetic particle imaging: introduction to imaging and hardware realization.Z Med Phys. 2012 Dec;22(4):323-34. doi: 10.1016/j.zemedi.2012.07.004. Epub 2012 Aug 19. Z Med Phys. 2012. PMID: 22909418 Review.
-
Magnetic particle imaging for assessment of cerebral perfusion and ischemia.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Jan;14(1):e1757. doi: 10.1002/wnan.1757. Epub 2021 Oct 6. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022. PMID: 34617413 Review.
Cited by
-
Magnetic particle imaging: current developments and future directions.Int J Nanomedicine. 2015 Apr 22;10:3097-114. doi: 10.2147/IJN.S70488. eCollection 2015. Int J Nanomedicine. 2015. PMID: 25960650 Free PMC article. Review.
-
In vivo tracking and quantification of inhaled aerosol using magnetic particle imaging towards inhaled therapeutic monitoring.Theranostics. 2018 Jun 8;8(13):3676-3687. doi: 10.7150/thno.26608. eCollection 2018. Theranostics. 2018. PMID: 30026874 Free PMC article.
-
Concept for using magnetic particle imaging for intraoperative margin analysis in breast-conserving surgery.Sci Rep. 2021 Jun 29;11(1):13456. doi: 10.1038/s41598-021-92644-8. Sci Rep. 2021. PMID: 34188077 Free PMC article.
-
Harmonic dependence of thermal magnetic particle imaging.Sci Rep. 2023 Sep 22;13(1):15762. doi: 10.1038/s41598-023-42620-1. Sci Rep. 2023. PMID: 37737290 Free PMC article.
-
Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy.ACS Nano. 2018 Apr 24;12(4):3699-3713. doi: 10.1021/acsnano.8b00893. Epub 2018 Mar 28. ACS Nano. 2018. PMID: 29570277 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical