Properties of the histidine residues of indole-chymotrypsin. Implications for the activation process and catalytic mechanism
- PMID: 241327
- PMCID: PMC1165466
- DOI: 10.1042/bj1470411
Properties of the histidine residues of indole-chymotrypsin. Implications for the activation process and catalytic mechanism
Abstract
The use of a linear free-energy relationship shows that both histidine residues of alpha-chymotrypsin and chymotrypsinogen are super-reactive toward 1-fluoro-2,4-dinitrobenzene. The binding of indole to the specificity site of alpha-chymotrypsin causes both histidine residues to become less reactive. On the basis of these results and those from X-ray-crystallographic studies, the following conclusions are made. (1) The super-reactivity of the catalytic-site histidine-57 is due to charge transfer from aspartic acid-102 by means of hydrogen bonding. (2) The aspartic acid-102-histidine-57-serine-195 'charge-relay' system is not complete in the zymogen or native enzyme and only on binding of a suitable substrate or ligand to the specificity site of the enzyme is the charge transfer to serine-195 completed. (3) The lack of substantial enzymic activity in the zymogen is due to the absence of a completed specificity site, and therefore it cannot bind suitable substrates or ligands to induce completion of the charge-relay system.
Similar articles
-
A competitive labelling method for determining the ionization constants and reactivity of individual histidine residues in proteins. The histidines of -chymotrypsin.Biochem J. 1972 Dec;130(4):1125-31. doi: 10.1042/bj1301125. Biochem J. 1972. PMID: 4656796 Free PMC article.
-
Zymogen activation in serine proteinases. Proton magnetic resonance pH titration studies of the two histidines of bovine chymotrypsinogen A and chymotrypsin Aalpha.Biochemistry. 1978 Oct 31;17(22):4627-40. doi: 10.1021/bi00615a008. Biochemistry. 1978. PMID: 31898
-
Properties of the His57-Asp102 dyad of rat trypsin D189S in the zymogen, activated enzyme, and alpha1-proteinase inhibitor complexed forms.Arch Biochem Biophys. 1999 Feb 15;362(2):254-64. doi: 10.1006/abbi.1998.1035. Arch Biochem Biophys. 1999. PMID: 9989934
-
The active centers of serine proteinases.Ann N Y Acad Sci. 1974 Feb 18;227:438-45. doi: 10.1111/j.1749-6632.1974.tb14406.x. Ann N Y Acad Sci. 1974. PMID: 4597310 Review. No abstract available.
-
Mechanisms of zymogen activation.Annu Rev Biophys Bioeng. 1977;6:177-93. doi: 10.1146/annurev.bb.06.060177.001141. Annu Rev Biophys Bioeng. 1977. PMID: 17350 Review. No abstract available.
Cited by
-
Chemical reactivity of the functional groups of insulin. Concentration-dependence studies.Biochem J. 1984 Jan 1;217(1):135-43. doi: 10.1042/bj2170135. Biochem J. 1984. PMID: 6365082 Free PMC article.
-
Structure-function relationships in the free insulin monomer.Biochem J. 1986 Aug 1;237(3):663-8. doi: 10.1042/bj2370663. Biochem J. 1986. PMID: 3099757 Free PMC article.
-
Kinetics of subtilisin and thiolsubtilisin.Mol Cell Biochem. 1983;51(1):5-32. doi: 10.1007/BF00215583. Mol Cell Biochem. 1983. PMID: 6343835 Review.
-
Chemical properties of the functional groups of insulin.Biochem J. 1981 Feb 1;193(2):419-25. doi: 10.1042/bj1930419. Biochem J. 1981. PMID: 7030309 Free PMC article.
-
Chemical properties of the N-termini of human haemoglobin.Biochem J. 1982 May 1;203(2):435-43. doi: 10.1042/bj2030435. Biochem J. 1982. PMID: 7115297 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources