Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Oct 21;14(21):4712-8.
doi: 10.1021/bi00692a023.

Kinetics of sulfate transport by Penicillium notatum. Interactions of sulfate, protons, and calcium

Kinetics of sulfate transport by Penicillium notatum. Interactions of sulfate, protons, and calcium

J Cuppoletti et al. Biochemistry. .

Abstract

The active transport of inorganic sulfate by an ATP sulfurylase-negative strain of Penicillium notatum is promoted by H+ ions and metal ions (divalent metal ions being more effective than monovalent metal ions). Initial velocity studies suggest that H+ and SO4(2-) add to the carrier in an ordered sequence (H+ before SO4(2-)), with H+ at equilibrium with free carrier and carrier-H+ complex. The linear reciprocal plots and replots suggest a 1:1 stoichiometry between H+ and SO4(2-). Ca2+ and other divalent metal ions stimulate sulfate transport markedly in buffered suspensions of low ionic strength. The kinetics of the Ca2+/SO4(2-) interaction suggest that Ca2+ (like H+) adds to the carrier before SO4(2-) and is at equilibrium with free carrier and carrier-Ca2+ complex. The linear reciprocal plots and replots indicate a 1:1 stoichiometry between Ca2+ and SO4(2-). Thus the fully loaded carrier-SO4(2-) -Ca2+ -H+ complex has a net positive charge relative to that of the free carrier, a fact consistent with the chemiosmotic hypothesis of membrane transport. The kinetics of the H+/Ca2+ interaction point to a random A-B (rapid equilibrium), ordered C sequence with A = H+, B = Ca2+, and C = SO4(2-). Selenate (an alternate substrate competitive with sulfate) is an uncompetitive inhibitor with respect to Ca2+, in agreement with the suggested mechanism. Internal charge balance is not accomplished by a stoichiometric coaccumulation of Ca2+ and SO4(2-). Sulfate transport does, however, promote 45Ca2+ uptake. A significant fraction of the added Ca2+ is bound by the mycelial surface. Binding is extremely rapid, but reversible.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources