K(+) and Na(+) conduction in selective and nonselective ion channels via molecular dynamics simulations
- PMID: 24138849
- PMCID: PMC3797574
- DOI: 10.1016/j.bpj.2013.08.049
K(+) and Na(+) conduction in selective and nonselective ion channels via molecular dynamics simulations
Abstract
Generations of scientists have been captivated by ion channels and how they control the workings of the cell by admitting ions from one side of the cell membrane to the other. Elucidating the molecular determinants of ion conduction and selectivity are two of the most fundamental issues in the field of biophysics. Combined with ongoing progress in structural studies, modeling and simulation have been an integral part of the development of the field. As of this writing, the relentless growth in computational power, the development of new algorithms to tackle the so-called rare events, improved force-field parameters, and the concomitant increasing availability of membrane protein structures, allow simulations to contribute even further, providing more-complete models of ion conduction and selectivity in ion channels. In this report, we give an overview of the recent progress made by simulation studies on the understanding of ion permeation in selective and nonselective ion channels.
Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Figures


Similar articles
-
Plants do it differently. A new basis for potassium/sodium selectivity in the pore of an ion channel.Plant Physiol. 2003 Jul;132(3):1353-61. doi: 10.1104/pp.103.020560. Plant Physiol. 2003. PMID: 12857817 Free PMC article.
-
A single NaK channel conformation is not enough for non-selective ion conduction.Nat Commun. 2018 Feb 19;9(1):717. doi: 10.1038/s41467-018-03179-y. Nat Commun. 2018. PMID: 29459730 Free PMC article.
-
Conductance selectivity of Na+ across the K+ channel via Na+ trapped in a tortuous trajectory.Proc Natl Acad Sci U S A. 2021 Mar 23;118(12):e2017168118. doi: 10.1073/pnas.2017168118. Proc Natl Acad Sci U S A. 2021. PMID: 33741736 Free PMC article.
-
Simulation Studies of Ion Permeation and Selectivity in Voltage-Gated Sodium Channels.Curr Top Membr. 2016;78:215-60. doi: 10.1016/bs.ctm.2016.07.005. Epub 2016 Aug 3. Curr Top Membr. 2016. PMID: 27586286 Review.
-
Interactions of drugs and toxins with permeant ions in potassium, sodium, and calcium channels.Ross Fiziol Zh Im I M Sechenova. 2011 Jul;97(7):661-77. Ross Fiziol Zh Im I M Sechenova. 2011. PMID: 21961291 Review.
Cited by
-
Energetics of Ion Permeation in an Open-Activated TRPV1 Channel.Biophys J. 2016 Sep 20;111(6):1214-1222. doi: 10.1016/j.bpj.2016.08.009. Biophys J. 2016. PMID: 27653480 Free PMC article.
-
Effects of the protonation state of the EEEE motif of a bacterial Na(+)-channel on conduction and pore structure.Biophys J. 2014 May 20;106(10):2175-83. doi: 10.1016/j.bpj.2014.04.005. Biophys J. 2014. PMID: 24853746 Free PMC article.
-
A channel profile report of the unusual K+ channel KtrB.J Gen Physiol. 2019 Dec 2;151(12):1357-1368. doi: 10.1085/jgp.201912384. Epub 2019 Oct 17. J Gen Physiol. 2019. PMID: 31624134 Free PMC article.
-
Permeation redux: thermodynamics and kinetics of ion movement through potassium channels.Biophys J. 2014 May 6;106(9):1859-63. doi: 10.1016/j.bpj.2014.03.039. Biophys J. 2014. PMID: 24806917 Free PMC article. Review.
-
Dynamics of the EAG1 K+ channel selectivity filter assessed by molecular dynamics simulations.Biochem Biophys Res Commun. 2017 Feb 26;484(1):107-112. doi: 10.1016/j.bbrc.2017.01.064. Epub 2017 Jan 19. Biochem Biophys Res Commun. 2017. PMID: 28109880 Free PMC article.
References
-
- Doyle D.A., Morais Cabral J., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998;280:69–77. - PubMed
-
- Jiang Y., Lee A., MacKinnon R. Crystal structure and mechanism of a calcium-gated potassium channel. Nature. 2002;417:515–522. - PubMed
-
- Jiang Y., Lee A., MacKinnon R. X-ray structure of a voltage-dependent K+ channel. Nature. 2003;423:33–41. - PubMed
-
- Kuo A., Gulbis J.M., Doyle D.A. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science. 2003;300:1922–1926. - PubMed
-
- Long S.B., Campbell E.B., Mackinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science. 2005;309:897–903. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials