The Drosophila anatomy ontology
- PMID: 24139062
- PMCID: PMC4015547
- DOI: 10.1186/2041-1480-4-32
The Drosophila anatomy ontology
Abstract
Background: Anatomy ontologies are query-able classifications of anatomical structures. They provide a widely-used means for standardising the annotation of phenotypes and expression in both human-readable and programmatically accessible forms. They are also frequently used to group annotations in biologically meaningful ways. Accurate annotation requires clear textual definitions for terms, ideally accompanied by images. Accurate grouping and fruitful programmatic usage requires high-quality formal definitions that can be used to automate classification and check for errors. The Drosophila anatomy ontology (DAO) consists of over 8000 classes with broad coverage of Drosophila anatomy. It has been used extensively for annotation by a range of resources, but until recently it was poorly formalised and had few textual definitions.
Results: We have transformed the DAO into an ontology rich in formal and textual definitions in which the majority of classifications are automated and extensive error checking ensures quality. Here we present an overview of the content of the DAO, the patterns used in its formalisation, and the various uses it has been put to.
Conclusions: As a result of the work described here, the DAO provides a high-quality, queryable reference for the wild-type anatomy of Drosophila melanogaster and a set of terms to annotate data related to that anatomy. Extensive, well referenced textual definitions make it both a reliable and useful reference and ensure accurate use in annotation. Wide use of formal axioms allows a large proportion of classification to be automated and the use of consistency checking to eliminate errors. This increased formalisation has resulted in significant improvements to the completeness and accuracy of classification. The broad use of both formal and informal definitions make further development of the ontology sustainable and scalable. The patterns of formalisation used in the DAO are likely to be useful to developers of other anatomy ontologies.
Figures




References
-
- Sprague J, Bayraktaroglu L, Bradford Y, Conlin T, Dunn N, Fashena D, Frazer K, Haendel M, Howe DG, Knight J, Mani P, Moxon SA, Pich C, Ramachandran S, Schaper K, Segerdell E, Shao X, Singer A, Song P, Sprunger B, Van Slyke CE, Westerfield M. The Zebrafish Information Network: the zebrafish model organism database provides expanded support for genotypes and phenotypes. Nucleic Acids Res. 2008;4(Database issue):D768–D772. - PMC - PubMed
-
- Bult CJ, Eppig JT, Blake JA, Kadin JA, Richardson JE, Airey MT, Anagnostopoulos A, Babiuk R, Baldarelli RM, Beal JS, Bello SM, Butler NE, Campbell J, Corbani LE, Dene H, Drabkin HR, Forthofer KL, Giannatto SL, Knowlton M, Lewis JR, McAndrews M, McClatchy S, Miers DS, Ni L, Onda H, Ormsby JE, Recla JM, Reed DJ, Richards-Smith B, Shaw DR. et al.The mouse genome database: genotypes, phenotypes, and models of human disease. Nucleic Acids Res. 2013;4(Database issue):D885–D891. - PMC - PubMed
-
- Engel SR, Balakrishnan R, Binkley G, Christie KR, Costanzo MC, Dwight SS, Fisk DG, Hirschman JE, Hitz BC, Hong EL, Krieger CJ, Livstone MS, Miyasato SR, Nash R, Oughtred R, Park J, Skrzypek MS, Weng S, Wong ED, Dolinski K, Botstein D, Cherry JM. Saccharomyces Genome Database provides mutant phenotype data. Nucleic Acids Res. 2010;4(Database issue):D433–D436. - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources