Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Oct 22;403(2):301-14.
doi: 10.1016/0005-2744(75)90060-1.

Purification and properties of S-adenosyl-L-methionine: caffeic acid O-methyltransferase from leaves of spinach beet (Beta vulgaris L)

Purification and properties of S-adenosyl-L-methionine: caffeic acid O-methyltransferase from leaves of spinach beet (Beta vulgaris L)

J E Poulton et al. Biochim Biophys Acta. .

Abstract

1. An enzyme catalysing the methylation of caffeic acid to ferulic acid, using S-adenosyl-L-methionine as methyl donor, has been extracted from leaves of spinach beet and purified 75-fold to obtain a stable preparation. 2. The enzyme showed optimum activity at pH 6.5, and did not require the addition of Mg2+ for maximum activity. 3. It was most active with caffeic acid, but showed some activity with catechol, protocatechuic acid and 3,4-dihydroxybenzaldehyde. The Km for caffeic acid was 68 muM. 4. 4. The Km for S-adenosyl-L-methionine was 12.5 muM. S-Adenosyl-L-homocystein (Ki = 4.4 muM) was a competitive inhibitor of S-adenosyl-L-methionine. 5. The synthesis of S-adenosyl-L-homocysteine from adenosine and L-homocysteine and its consequent effect on caffeic acid methylation were demonstrated with a partially-purified preparation from spinach-beet leaves, which possessed both S-adenosyl-L-homocysteine hydrolase (EC 3.3.1.1) and adenosine nucleosidase (EC 3.2.2.7) activities. This preparation was also able to catalyse the rapid breakdown of S-adenosyl-L-homocysteine to adenosine and adenine; the possible significance of this reaction in relieving the inhibition of caffeic acid methylation by S-adenosyl-L-homocystein is discussed.

PubMed Disclaimer

LinkOut - more resources