Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Oct 25;260(24):13122-9.

Muscarinic cholinergic inhibition of beta-adrenergic stimulation of phospholamban phosphorylation and Ca2+ transport in guinea pig ventricles

  • PMID: 2414274
Free article

Muscarinic cholinergic inhibition of beta-adrenergic stimulation of phospholamban phosphorylation and Ca2+ transport in guinea pig ventricles

J P Lindemann et al. J Biol Chem. .
Free article

Abstract

The effects of muscarinic cholinergic stimulation on beta-adrenergic induced increases in phospholamban phosphorylation and Ca2+ transport were studied in intact myocardium. Isolated guinea pig ventricles were perfused via the coronary arteries with 32Pi, after which membrane vesicles were isolated from individual hearts. Isoproterenol produced reversible increases in 32P incorporation into phospholamban. Associated with the increases in 32P incorporation were increases in the initial rate of phosphate-facilitated Ca2+ uptake measured in aliquots of the same membrane vesicles isolated from the perfused hearts. The increases in 32P incorporation and calcium transport were significantly attenuated by the simultaneous administration of acetylcholine. Acetylcholine also attenuated increases in phospholamban phosphorylation and Ca2+ uptake produced by the phosphodiesterase inhibitor isobutylmethylxanthine and forskolin. The contractile effects of all agents which increased cAMP levels (increased contractility and a reduction in the t1/2 of relaxation) were also attenuated by acetylcholine. The inhibitory effects of acetylcholine were associated with attenuation of the increases in cAMP levels produced by isoproterenol and isobutylmethylxanthine but not by forskolin. Acetylcholine also increased the rate of reversal of the functional and biochemical effects of isoproterenol by propranolol without affecting cAMP levels. These results suggest that cholinergic agonists inhibit the functional effects of beta-adrenergic stimulation in part by inhibition of phospholamban phosphorylation. This inhibition may be mediated by two potential mechanisms: inhibition of beta-adrenergic activation of adenylate cyclase and stimulation of dephosphorylation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources