Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Nov 14;56(21):8826-33.
doi: 10.1021/jm401250s. Epub 2013 Nov 5.

4β-Methyl-5-(3-hydroxyphenyl)morphan opioid agonist and partial agonist derived from a 4β-methyl-5-(3-hydroxyphenyl)morphan pure antagonist

Affiliations

4β-Methyl-5-(3-hydroxyphenyl)morphan opioid agonist and partial agonist derived from a 4β-methyl-5-(3-hydroxyphenyl)morphan pure antagonist

F Ivy Carroll et al. J Med Chem. .

Abstract

In previous studies we reported that addition of 7α-acylamino groups to N-phenylpropyl-4β-methyl-5-(3-hydroxyphenyl)morphan (4) led to compounds that were pure opioid receptor antagonists. In contrast to these findings we report in this study that addition of a 7α-amino (5a), 7α-alkylamino (5b-e), or 7α-dialkylamino (5f-h) group to 4 leads to opioid receptor ligands with varying degrees of agonist/antagonist activity. The 7α-amino and 7α-methylamino analogues were full agonists at the μ and δ receptors and antagonists at the κ receptor. The 7α-cyclopropylmethylamino analogue 5h was a full agonist at the μ receptor with weaker agonist activity at the δ and κ receptors. Whereas the addition of a 7α-acylamino group to the pure nonselective opioid receptor antagonist N-phenylpropyl-4β-methyl-5-(3-hydroxyphenyl)morphan (4) led to κ selective pure opioid receptor antagonist, the addition of a 7α-amino, 7α-alkylamino, or 7α-dialkylamino group to 4 leads to opioid ligands that are largely μ or δ agonist with mixed agonist/antagonist properties.

PubMed Disclaimer

Figures

Scheme 1<sup>a</sup>
Scheme 1a
aReagents: (a) Formic acid, PyBOP, DIPEA, CH2Cl2; (b) LAH, THF; (c) R1CHO, NaBH3(CN), CF3CH2OH; (d) Paraformaldehyde, NaBH3(CN), CF3CH2OH
Scheme 2<sup>a</sup>
Scheme 2a
aReagents: (a) Zn, HCl; (b) ACE-Cl, DCE, reflux; (c) MeOH, reflux; (d) 3-phenylpropionaldehyde, NaBH3(CN), CF3CH2OH; (e) BBr3, CH2Cl2

Similar articles

Cited by

References

    1. Zimmerman DM, Nickander R, Horng JS, Wong DT. New structural concepts for narcotic antagonists defined in a 4-phenylpiperidine series. Nature. 1978;275:332–334. - PubMed
    1. Mitch CH, Leander JD, Mendelsohn LG, Shaw WN, Wong DT, Cantrell BE, Johnson BG, Reel JK, Snoddy JD, Takemori AE, Zimmerman DM. 3,4-Dimethyl-4-(3-hydroxyphenyl)piperidines: Opioid antagonists with potent anorectant activity. J. Med. Chem. 1993;36:2842–2850. - PubMed
    1. Thomas JB, Mascarella SW, Rothman RB, Partilla JS, Xu H, McCullough KB, Dersch CM, Cantrell BE, Zimmerman DM, Carroll FI. Investigation of the N-substituent conformation governing potency and mu receptor subtype-selectivity in (+)-(3R, 4R)-dimethyl-4-(3-hydroxyphenyl)piperidine opioid antagonists. J. Med. Chem. 1998;41:1980–1990. - PubMed
    1. Zimmerman DM, Gidda JS, Cantrell BE, Schoepp DD, Johnson BG, Leander JD. Discovery of a potent, peripherally selective trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine opioid antagonist for the treatment of gastrointestinal motility disorders. J. Med. Chem. 1994;37:2262–2265. - PubMed
    1. Zimmerman DM, Leander JD, Cantrell BE, Reel JK, Snoddy J, Mendelsohn LG, Johnson BG, Mitch CH. Structure-activity relationships of the trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine antagonists for μ and κ opioid receptors. J. Med. Chem. 1993;36:2833–2841. - PubMed

Publication types

MeSH terms