Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan:62:119-29.
doi: 10.1016/j.aap.2013.09.012. Epub 2013 Oct 1.

Near-miss narratives from the fire service: a Bayesian analysis

Affiliations
Free article

Near-miss narratives from the fire service: a Bayesian analysis

Jennifer A Taylor et al. Accid Anal Prev. 2014 Jan.
Free article

Abstract

Background: In occupational safety research, narrative text analysis has been combined with coded surveillance, data to improve identification and understanding of injuries and their circumstances. Injury data give, information about incidence and the direct cause of an injury, while near-miss data enable the, identification of various hazards within an organization or industry. Further, near-miss data provide an, opportunity for surveillance and risk reduction. The National Firefighter Near-Miss Reporting System, (NFFNMRS) is a voluntary reporting system that collects narrative text data on near-miss and injurious, events within the fire and emergency services industry. In recent research, autocoding techniques, using Bayesian models have been used to categorize/code injury narratives with up to 90% accuracy, thereby reducing the amount of human effort required to manually code large datasets. Autocoding, techniques have not yet been applied to near-miss narrative data.

Methods: We manually assigned mechanism of injury codes to previously un-coded narratives from the, NFFNMRS and used this as a training set to develop two Bayesian autocoding models, Fuzzy and Naïve. We calculated sensitivity, specificity and positive predictive value for both models. We also evaluated, the effect of training set size on prediction sensitivity and compared the models' predictive ability as, related to injury outcome. We cross-validated a subset of the prediction set for accuracy of the model, predictions.

Results: Overall, the Fuzzy model performed better than Naïve, with a sensitivity of 0.74 compared to 0.678., Where Fuzzy and Naïve shared the same prediction, the cross-validation showed a sensitivity of 0.602., As the number of records in the training set increased, the models performed at a higher sensitivity, suggesting that both the Fuzzy and Naïve models were essentially "learning". Injury records were, predicted with greater sensitivity than near-miss records.

Conclusion: We conclude that the application of Bayesian autocoding methods can successfully code both near misses, and injuries in longer-than-average narratives with non-specific prompts regarding injury. Such, coding allowed for the creation of two new quantitative data elements for injury outcome and injury, mechanism.

Keywords: Bayesian models; Fire fighter injury; Near-miss narratives; Text-mining.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources