Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Feb;42(2):e132-42.
doi: 10.1097/CCM.0b013e3182a668e4.

Prolonged therapeutic hypothermia is more effective in attenuating brain apoptosis in a Swine cardiac arrest model

Affiliations

Prolonged therapeutic hypothermia is more effective in attenuating brain apoptosis in a Swine cardiac arrest model

Gil Joon Suh et al. Crit Care Med. 2014 Feb.

Abstract

Objectives: To investigate whether 48 hours of therapeutic hypothermia is more effective to attenuate brain apoptosis than 24 hours and to determine whether the antiapoptotic effects of therapeutic hypothermia are associated with the suppressions of the cleavage of protein kinase C-δ, the cytosolic release of cytochrome c, and the cleavage of caspase 3 in a swine cardiac arrest model.

Design: Prospective laboratory study.

Setting: University laboratory.

Subjects: Male domestic pigs (n = 24).

Interventions: After 6 minutes of no-flow time that was induced by ventricular fibrillation, cardiopulmonary resuscitation was provided, and the return of spontaneous circulation was achieved. The animals were randomly assigned to the following groups: sham, normothermia, 24 hours of therapeutic hypothermia, or 48 hours of therapeutic hypothermia. Therapeutic hypothermia (core temperature, 32-34°C) was maintained for 24 or 48 hours post return of spontaneous circulation, and the animals were rewarmed for 8 hours. At 60 hours post return of spontaneous circulation, the animals were killed, and brain tissues were harvested.

Measurements and main results: We examined cellular apoptosis and neuronal damage in the brain hippocampal cornu ammonis 1 region. We also measured the cleavage of protein kinase C-δ, the cytosolic release of cytochrome c, and the cleavage of caspase 3 in the hippocampus. The 48 hours of therapeutic hypothermia attenuated cellular apoptosis and neuronal damage when compared with normothermia. There was also a decrease in the cleavage of protein kinase C-δ, the cytosolic release of cytochrome c, and the cleavage of caspase 3. However, 24 hours of therapeutic hypothermia did not significantly attenuate cellular apoptosis or neuronal damage.

Conclusions: We found that 48 hours of therapeutic hypothermia was more effective in attenuating brain apoptosis than 24 hours of therapeutic hypothermia. We also found that the antiapoptotic effects of therapeutic hypothermia were associated with the suppressions of the cleavage of protein kinase C-δ, the cytosolic release of cytochrome c, and the cleavage of caspase 3.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types