Post-translational control of cardiac hemodynamics through myosin binding protein C
- PMID: 24145982
- PMCID: PMC3946879
- DOI: 10.1007/s00424-013-1377-y
Post-translational control of cardiac hemodynamics through myosin binding protein C
Abstract
Cardiac myosin binding protein C (cMyBP-C) is an integral sarcomeric protein that associates with the thick, thin, and titin filament systems in the contractile apparatus. Three different isoforms of MyBP-C exist in mammalian muscle: slow skeletal (MyBPC1), fast skeletal (MyBP-C2, with several variants), and cardiac (cMyBP-C). Genetic screening studies show that mutations in MYBPC3 occur frequently and are responsible for as many as 30-35 % of identified cases of familial hypertrophic cardiomyopathy. The function of cMyBP-C is stringently regulated by its post-translational modification. In particular, the addition of phosphate groups occurs with high frequency on certain serine residues that are located in the cardiac-specific regulatory M domain. Phosphorylation of this domain has been extensively studied in vitro and in vivo. Phosphorylation of the M domain can regulate the manner in which actin and myosin interact, affecting the cross bridge cycle and ultimately, cardiac hemodynamics.
Figures


References
-
- Bardswell SC, Cuello F, Rowland AJ, Sadayappan S, Robbins J, Gautel M, Walker JW, Kentish JC, Avkiran M. Distinct sarcomeric substrates are responsible for protein kinase D-mediated regulation of cardiac myofilament Ca2+ sensitivity and cross-bridge cycling. J Biol Chem. 2010;285:5674–5682. doi: 10.1074/jbc.M109.066456. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous