Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct 17;8(10):e77765.
doi: 10.1371/journal.pone.0077765. eCollection 2013.

Inter-laboratory assessment of a prototype multiplex kit for determination of recent HIV-1 infection

Affiliations

Inter-laboratory assessment of a prototype multiplex kit for determination of recent HIV-1 infection

Kelly A Curtis et al. PLoS One. .

Abstract

Background: Accurate and reliable laboratory-based assays are needed for estimating HIV-1 incidence from cross-sectional samples. We recently described the development of a customized, HIV-1-specific Bio-Plex assay that allows for the measurement of HIV-specific antibody levels and avidity to multiple analytes for improved HIV-1 incidence estimates.

Methods: To assess intra- and inter-laboratory assay performance, prototype multiplex kits were developed and evaluated by three distinct laboratories. Longitudinal seroconversion specimens were tested in parallel by each laboratory and kit performance was compared to that of an in-house assay. Additionally, the ability of the kit to distinguish recent from long-term HIV-1 infection, as compared to the in-house assay, was determined by comparing the reactivity of known recent (infected <6 months) and long-term (infected >12 months) drug naïve specimens.

Results: Although the range of reactivity for each analyte varied between the prototype kit and in-house assay, a measurable distinction in reactivity between recent and long-term specimens was observed with both assays in all three laboratories. Additionally, kit performance was consistent between all three laboratories. The intra-assay coefficient of variation (CV), between sample replicates for all laboratories, ranged from 0.5% to 6.1%. The inter-laboratory CVs ranged from 8.5% to 21.3% for gp160-avidity index (a) and gp120-normalized mean fluorescent intensity (MFI) value (n), respectively.

Conclusion: We demonstrate the feasibility of producing a multiplex kit for measuring HIV antibody levels and avidity, with the potential for improved incidence estimates based on multi-analyte algorithms. The availability of a commercial kit will facilitate the transfer of technology among diverse laboratories for widespread assay use.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Performance of in-house assay versus prototype kit.
The normalized MFI values (n) and avidity index (a) for the in-house assay and kit were compared for drug naïve, known recent (infected <6 months) and long-term (infected >1 year) specimens. The boxes represent the 25th to 75th percentile of reactivity, while the middle lines represent the median values. Black dots indicate the 5th to 95th percentile of reactivity.
Figure 2
Figure 2. Inter-laboratory reproducibility of kit measures.
The normalized MFI values and avidity index of longitudinal seroconversion panels were compared for the three participating laboratories. The values for each laboratory were plotted on a separate axis.
Figure 3
Figure 3. Inter-laboratory kit performance.
The normalized MFI values (n) and avidity index (a) of known recent and long-term specimens, as measured by the prototype kits, were compared for each laboratory.

Similar articles

Cited by

References

    1. Janssen RS, Satten GA, Stramer SL, Rawal BD, O'Brien TR et al. (1998) New testing strategy to detect early HIV-1 infection for use in incidence estimates and for clinical and prevention purposes. JAMA 280: 42-48. doi:10.1001/jama.280.1.42. PubMed: 9660362. - DOI - PubMed
    1. Brookmeyer R (2010) Measuring the HIV/AIDS epidemic: approaches and challenges. Epidemiol Rev 32: 26-37. doi:10.1093/epirev/mxq002. PubMed: 20203104. - DOI - PubMed
    1. Mastro TD, Kim AA, Hallett T, Rehle T, Welte A et al. (2010) Estimating HIV Incidence in Populations Using Tests for Recent Infection: Issues, Challenges and the Way Forward. J HIV Aids Surveill Epidemiol 2: 1-14. PubMed: 21743821. - PMC - PubMed
    1. Smoleń-Dzirba J, Wąsik TJ (2011) Current and future assays for identifying recent HIV infections at the population level. Med Sci Monit 17: RA124–33: RA124- 133. PubMed: 21525823 - PMC - PubMed
    1. Kothe D, Byers RH, Caudill SP, Satten GA, Janssen RS et al. (2003) Performance characteristics of a new less sensitive HIV-1 enzyme immunoassay for use in estimating HIV seroincidence. J Acquir Immune Defic Syndr 33: 625-634. doi:10.1097/00126334-200308150-00012. PubMed: 12902808. - DOI - PubMed

Publication types