Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Nov 27;135(47):17675-8.
doi: 10.1021/ja408033e. Epub 2013 Nov 18.

Facile and efficient preparation of anisotropic DNA-functionalized gold nanoparticles and their regioselective assembly

Affiliations

Facile and efficient preparation of anisotropic DNA-functionalized gold nanoparticles and their regioselective assembly

Li Huey Tan et al. J Am Chem Soc. .

Abstract

Anisotropic nanoparticles can provide considerable opportunities for assembly of nanomaterials with unique structures and properties. However, most reported anisotropic nanoparticles are either difficult to prepare or to functionalize. Here we report a facile one-step solution-based method to prepare anisotropic DNA-functionalized gold nanoparticles (a-DNA-AuNP) with 96% yield and with high DNA density (120 ± 20 strands on the gold hemisphere). The method is based on the competition between a thiolated hydrophilic DNA and a thiolated hydrophobic phospholipid and has been applied to prepare a-DNA-AuNPs of different sizes and with a variety of DNA sequences. In addition, DNA strands on the a-DNA-AuNPs can be exchanged with other DNA strands with a different sequence. The anisotropic nature of the a-DNA-AuNPs allows regioselective hetero- and homonuclear assembly with high monodispersity, as well as regioselective functionalization of two different DNA strands for more diverse applications.

PubMed Disclaimer

Conflict of interest statement

Notes

The authors declare no competing financial interests.

Figures

Figure 1
Figure 1
(a) Schematic for the synthesis of a-DNA-AuNP where HS-A10, PSH, PSPAA and AuNP are incubated at 95°C for two hours in DMF/H2O. TEM micrographs of (b) 15 nm a-DNA-AuNP, (c) 20 nm a-AuNP, (d) completely unencapsulated AuNP when no PSH was added, (e) fully encapsulated AuNP when no SH-A10 was added. (f) UV-vis absorption spectra of citrate-capped AuNP, the a-DNA-AuNP sample in (b), and fully encapsulated AuNP (d), inset shows the shift of plasmon peak from 525 nm to 535 nm. Scale bar = 50 nm.
Figure 2
Figure 2
(a) Schematic for the functionalization of a-AuNP with D1 resulting in a-(D1)-AuNP. Schematic of selective assembly of a-(D1)-AuNP (b) with 5 nm c-AuNPs and (c) 10 nm c-AuNPs with its corresponding TEM micrographs and histogram showing particle analysis. Scale bars are 50 nm.
Figure 3
Figure 3
(a) a-(D1)-AuNP – 30 nm c-AuNP assemblies at a ratio of 1:1 (upper) and 10:1 (lower). (b) Hetero-assembly of 20 nm and 13 nm a-(D1)-AuNP. (c) Homo – assembly of a-(D1)-AuNP using a linker strand D3. Scale bar = 100 nm; (insets) 25 nm.
Figure 4
Figure 4
(a) Scheme showing functionalization of D4 on the polymer side of the particle via EDC coupling. Fluorescence spectra of a-(D1+D4)-AuNP before and after incubation with (b) D5 c-AuNP and (c) D2 c-AuNP.

Similar articles

Cited by

References

    1. Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP, Schultz PG. Nature. 1996;382:609–611. - PubMed
    2. Sheikholeslami S, Jun Y-w, Jain PK, Alivisatos AP. Nano Lett. 2010;10:2655–2660. - PubMed
    3. Yan W, Xu L, Xu C, Ma W, Kuang H, Wang L, Kotov NA. J Am Chem Soc. 2012;134:15114–15121. - PubMed
    1. Lee JH, Wernette DP, Yigit MV, Liu J, Wang Z, Lu Y. Angew Chem Int Ed. 2007;46:9006–9010. - PubMed
    2. Deng Z, Tian Y, Lee SH, Ribbe AE, Mao C. Angew Chem Int Ed. 2005;44:3582–3585. - PubMed
    3. Ding B, Deng Z, Yan H, Cabrini S, Zuckermann RN, Bokor J. J Am Chem Soc. 2010;132:3248–3249. - PubMed
    4. Zhao Y, Xu L, Liz-Marzán LM, Kuang H, Ma W, Asenjo-García A, García de Abajo FJ, Kotov NA, Wang L, Xu C. J Phys Chem Lett. 2013;4:641–647. - PubMed
    1. Aldaye FA, Sleiman HF. Angew Chem Int Ed. 2006;45:2204–2209. - PubMed
    2. Zheng J, Constantinou PE, Micheel C, Alivisatos AP, Kiehl RA, Seeman NC. Nano Lett. 2006;6:1502–1504. - PMC - PubMed
    3. Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H. Science. 2009;323:112–116. - PMC - PubMed
    4. Tan SJ, Campolongo MJ, Luo D, Cheng W. Nat Nanotechnol. 2011;6:268–276. - PubMed
    1. Nykypanchuk D, Maye MM, van der Lelie D, Gang O. Nature. 2008;451:549–552. - PubMed
    2. Maye MM, Kumara MT, Nykypanchuk D, Sherman WB, Gang O. Nat Nano. 2010;5:116–120. - PubMed
    3. Macfarlane RJ, Lee B, Jones MR, Harris N, Schatz GC, Mirkin CA. Science. 2011;334:204–208. - PubMed
    4. Xu L, Ma W, Wang L, Xu C, Kuang H, Kotov NA. Chem Soc Rev. 2013;42:3114–3126. - PubMed
    1. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. Nature. 1996;382:607–609. - PubMed
    2. Katz E, Willner I. Angew Chem Int Ed. 2004;43:6042–6108. - PubMed
    3. Lau PS, Li YF. Curr Org Chem. 2011;15:557–575.
    4. Tikhomirov G, Hoogland S, Lee PE, Fischer A, Sargent EH, Kelley SO. Nat Nano. 2011;6:485–490. - PubMed
    5. Du J, Jiang L, Shao Q, Liu X, Marks RS, Ma J, Chen X. Small. 2013;9:1467–1481. - PubMed
    6. Kumar A, Hwang JH, Kumar S, Nam JM. Chem Commun. 2013;49:2597–2609. - PubMed
    7. Barrow SJ, Funston AM, Wei X, Mulvaney P. Nano Today. 2013;8:138–167.
    8. Xing H, Wong NY, Xiang Y, Lu Y. Curr Opin Chem Biol. 2012;16:429–435. - PMC - PubMed
    9. Wang Z, Lu Y. J Mater Chem. 2009;19:1788–1798. - PMC - PubMed
    10. Lu Y, Liu J. Acc Chem Res. 2007;40:315–323. - PubMed

Publication types

LinkOut - more resources