DNA repair in Mycoplasma gallisepticum
- PMID: 24148612
- PMCID: PMC4007778
- DOI: 10.1186/1471-2164-14-726
DNA repair in Mycoplasma gallisepticum
Abstract
Background: DNA repair is essential for the maintenance of genome stability in all living beings. Genome size as well as the repertoire and abundance of DNA repair components may vary among prokaryotic species. The bacteria of the Mollicutes class feature a small genome size, absence of a cell wall, and a parasitic lifestyle. A small number of genes make Mollicutes a good model for a "minimal cell" concept.
Results: In this work we studied the DNA repair system of Mycoplasma gallisepticum on genomic, transcriptional, and proteomic levels. We detected 18 out of 22 members of the DNA repair system on a protein level. We found that abundance of the respective mRNAs is less than one per cell. We studied transcriptional response of DNA repair genes of M. gallisepticum at stress conditions including heat, osmotic, peroxide stresses, tetracycline and ciprofloxacin treatment, stationary phase and heat stress in stationary phase.
Conclusions: Based on comparative genomic study, we determined that the DNA repair system M. gallisepticum includes a sufficient set of proteins to provide a cell with functional nucleotide and base excision repair and mismatch repair. We identified SOS-response in M. gallisepticum on ciprofloxacin, which is a known SOS-inducer, tetracycline and heat stress in the absence of established regulators. Heat stress was found to be the strongest SOS-inducer. We found that upon transition to stationary phase of culture growth transcription of DNA repair genes decreases dramatically. Heat stress does not induce SOS-response in a stationary phase.
Figures



Similar articles
-
A Mycoplasma gallisepticum Glycerol ABC Transporter Involved in Pathogenicity.Appl Environ Microbiol. 2021 May 11;87(11):e03112-20. doi: 10.1128/AEM.03112-20. Print 2021 May 11. Appl Environ Microbiol. 2021. PMID: 33741628 Free PMC article.
-
Ribosome profiling reveals an adaptation strategy of reduced bacterium to acute stress.Biochimie. 2017 Jan;132:66-74. doi: 10.1016/j.biochi.2016.10.015. Epub 2016 Oct 27. Biochimie. 2017. PMID: 27984202
-
Proteomic characterization of Mycoplasma gallisepticum nanoforming.Biochemistry (Mosc). 2010 Oct;75(10):1252-7. doi: 10.1134/s0006297910100068. Biochemistry (Mosc). 2010. PMID: 21166642
-
Structural and functional characterization of an organic hydroperoxide resistance protein from Mycoplasma gallisepticum.J Bacteriol. 2008 Mar;190(6):2206-16. doi: 10.1128/JB.01685-07. Epub 2008 Jan 11. J Bacteriol. 2008. PMID: 18192392 Free PMC article.
-
The future of whole-cell modeling.Curr Opin Biotechnol. 2014 Aug;28:111-5. doi: 10.1016/j.copbio.2014.01.012. Epub 2014 Feb 17. Curr Opin Biotechnol. 2014. PMID: 24556244 Free PMC article. Review.
Cited by
-
Data-independent proteome profile of Mycoplasma gallisepticum under normal conditions and heat stress.Data Brief. 2017 Dec 7;16:700-704. doi: 10.1016/j.dib.2017.11.093. eCollection 2018 Feb. Data Brief. 2017. PMID: 29541667 Free PMC article.
-
Thymidine utilisation pathway is a novel phenotypic switch of Mycoplasma hominis.J Med Microbiol. 2022 Jan;71(1):001468. doi: 10.1099/jmm.0.001468. J Med Microbiol. 2022. PMID: 35037614 Free PMC article.
-
Structural basis of the high thermal stability of the histone-like HU protein from the mollicute Spiroplasma melliferum KC3.Sci Rep. 2016 Nov 3;6:36366. doi: 10.1038/srep36366. Sci Rep. 2016. PMID: 27808161 Free PMC article.
-
Propionate Induces Virulent Properties of Crohn's Disease-Associated Escherichia coli.Front Microbiol. 2020 Jul 8;11:1460. doi: 10.3389/fmicb.2020.01460. eCollection 2020. Front Microbiol. 2020. PMID: 32733408 Free PMC article.
-
The Dynamics of Mycoplasma gallisepticum Nucleoid Structure at the Exponential and Stationary Growth Phases.Front Microbiol. 2021 Nov 18;12:753760. doi: 10.3389/fmicb.2021.753760. eCollection 2021. Front Microbiol. 2021. PMID: 34867875 Free PMC article.
References
-
- Alexeev D, Kostrjukova E, Aliper A, Popenko A, Bazaleev N, Tyakht A, Selezneva O, Akopian T, Prichodko E, Kondratov I, Chukin M, Demina I, Galyamina M, Kamashev D, Vanyushkina A, Ladygina V, Levitskii S, Lazarev V, Govorun V. Application of Spiroplasma melliferum proteogenomic profiling for the discovery of virulence factors and pathogenicity mechanisms in host-associated spiroplasmas. J Proteome Res. 2012;14:224–236. doi: 10.1021/pr2008626. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases