Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr;115(4):651-8.
doi: 10.1002/jcb.24700.

Estrogen inhibits RANKL-induced osteoclastic differentiation by increasing the expression of TRPV5 channel

Affiliations

Estrogen inhibits RANKL-induced osteoclastic differentiation by increasing the expression of TRPV5 channel

Fangjing Chen et al. J Cell Biochem. 2014 Apr.

Abstract

The inhibitor effect of estrogen on osteoclasts differentiation is very important in the etiology of estrogen protecting the adult skeleton against bone loss. However, the precise molecular events underlying the effect of estrogen on osteoclasts differentiation are not known. Recent studies implicated an important role of transient receptor potential vanilloid 5 (TRPV5) in osteoclast differentiation and bone resorption. Furthermore, some studies have confirmed that estrogen is involved in the regulation of calcium ion (Ca(2+)) influx in many cells via TRPV5 channel. Therefore, we hypothesize that TRPV5 channel may be implicated in the process of estrogen-inhibited osteoclastogenesis and bone resorption. Western blot, quantitative real-time PCR, tartrate-resistant acid phosphatase (TRAP) staining, and pit formation assay were employed to investigate the role of TRPV5 in estrogen decreasing osteoclast differentiation and bone resorption. We found that the expression of TRPV5 is significantly down-regulated during estrogen deficiency-induced osteoclastogenesis. Furthermore, TRAP staining and pit formation assay showed that the depletion of TRPV5 significantly blocks the inhibitor effects of estrogen on osteoclasts differentiation and bone resorption activity. Further studies confirmed that estrogen regulates the expression of TRPV5 channel via estrogen receptor. Based on these results above, we can draw conclusion that TRPV5 may contribute to the process of estrogen-inhibited osteoclastogenesis and bone resorption activity.

Keywords: ESTROGEN; OSTEOCLASTOGENESIS; OSTEOPOROSIS; TRPV5.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources