RNA polymerase I structure and transcription regulation
- PMID: 24153182
- DOI: 10.1038/nature12712
RNA polymerase I structure and transcription regulation
Abstract
Transcription of ribosomal RNA by RNA polymerase (Pol) I initiates ribosome biogenesis and regulates eukaryotic cell growth. The crystal structure of Pol I from the yeast Saccharomyces cerevisiae at 2.8 Å resolution reveals all 14 subunits of the 590-kilodalton enzyme, and shows differences to Pol II. An 'expander' element occupies the DNA template site and stabilizes an expanded active centre cleft with an unwound bridge helix. A 'connector' element invades the cleft of an adjacent polymerase and stabilizes an inactive polymerase dimer. The connector and expander must detach during Pol I activation to enable transcription initiation and cleft contraction by convergent movement of the polymerase 'core' and 'shelf' modules. Conversion between an inactive expanded and an active contracted polymerase state may generally underlie transcription. Regulatory factors can modulate the core-shelf interface that includes a 'composite' active site for RNA chain initiation, elongation, proofreading and termination.
Comment in
-
Structural biology: Pivotal findings for a transcription machine.Nature. 2013 Oct 31;502(7473):629-30. doi: 10.1038/nature12700. Epub 2013 Oct 23. Nature. 2013. PMID: 24153180 Free PMC article.
References
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
