The effect of a gelatin β-tricalcium phosphate sponge loaded with mesenchymal stem cells (MSC), bone morphogenic protein-2, and platelet-rich plasma (PRP) on equine articular cartilage defect
- PMID: 24155448
- PMCID: PMC3659453
The effect of a gelatin β-tricalcium phosphate sponge loaded with mesenchymal stem cells (MSC), bone morphogenic protein-2, and platelet-rich plasma (PRP) on equine articular cartilage defect
Abstract
We evaluated the curative efficacy of a gelatin β-tricalcium phosphate (β-TCP) sponge loaded with mesenchymal stem cells (MSC), bone morphogenic protein-2 (BMP-2), and platelet-rich plasma (PRP) by insertion into an experimentally induced osteochondral defect. A hole of 10 mm diameter and depth was drilled in the bilateral medial femoral condyles of 7 thoroughbred horses, and into each either a loaded sponge (treatment) or a saline-infused β-TCP sponge (control) was inserted. After 16 weeks, defects were examined by computed tomography, macroscopic analyses, and histological analyses. The median subchondral bone density and macroscopic subscores for joint healing were significantly higher in the treatment legs (P < 0.05). Although there was no significant difference in total histological scores between groups, hyaline cartilaginous tissue was observed across a wider area in the treatment group. Equine joint healing can be enhanced by inserting a BMP-2-, MSC-, and PRP-impregnated β-TCP sponge at the lesion site.
L’effet d’une éponge de phosphate β-tricalcique de gélatine imbibée de cellules souches mésenchymateuses (CSM), d’une protéine-2 morphogénétique osseuse et d’un plasma riche en plaquettes (PRP) sur un défaut de cartilage articulaire équin. Nous avons évalué l’efficacité curative d’une éponge de phosphate β-tricalcique de gélatine (β-TCP) imbibée de cellules souches mésenchymateuses (CSM), d’une protéine-2 morphogénétique osseuse (P2MO) et d’un plasma riche en plaquettes (PRP) en l’insérant dans un défaut ostéo-cartilagineux induit par expérimentation. Un trou de 10 mm de diamètre et de profondeur a été percé dans les condyles fémoraux médiaux bilatéraux de 7 pur-sang et, chez chaque cheval, une éponge imbibée (traitement) ou une éponge β-TCP infusée d’une solution saline (témoin) a été insérée. Après 16 semaines, les défauts ont été examinés par tomographie par ordinateur, analyses macroscopiques et analyses histologiques. La densité osseuse sous-chondrale et les sous-notes médianes de la guérison des articulations étaient significativement supérieures dans les jambes traitées (P < 0,05). Même s’il n’y avait pas de différences significatives au niveau des notes histologiques totales entre les groupes, le tissu cartilagineux hyalin a été observé sur une région plus vaste dans le groupe de traitement. La guérison des articulations équines peut être améliorée en insérant une éponge β-TCP imbibée de P2MO, de CSM et de PRP sur le site de la lésion.(Traduit par Isabelle Vallières).
Figures





Similar articles
-
Effects of bilayer gelatin/β-tricalcium phosphate sponges loaded with mesenchymal stem cells, chondrocytes, bone morphogenetic protein-2, and platelet rich plasma on osteochondral defects of the talus in horses.Res Vet Sci. 2013 Dec;95(3):1210-6. doi: 10.1016/j.rvsc.2013.08.016. Epub 2013 Sep 5. Res Vet Sci. 2013. PMID: 24054973
-
Effects of a synovial flap and gelatin/β-tricalcium phosphate sponges loaded with mesenchymal stem cells, bone morphogenetic protein-2, and platelet rich plasma on equine osteochondral defects.Res Vet Sci. 2015 Aug;101:140-3. doi: 10.1016/j.rvsc.2015.06.014. Epub 2015 Jul 4. Res Vet Sci. 2015. PMID: 26267104
-
Bone Regeneration of Osteoporotic Vertebral Body Defects Using Platelet-Rich Plasma and Gelatin β-Tricalcium Phosphate Sponges.Tissue Eng Part A. 2018 Jun;24(11-12):1001-1010. doi: 10.1089/ten.TEA.2017.0358. Epub 2018 Apr 12. Tissue Eng Part A. 2018. PMID: 29272991
-
Cell-based cartilage repair strategies in the horse.Vet J. 2016 Feb;208:1-12. doi: 10.1016/j.tvjl.2015.10.027. Epub 2015 Oct 23. Vet J. 2016. PMID: 26702950 Review.
-
Stem cells and platelet-rich plasma for the treatment of naturally occurring equine tendon and ligament injuries: a systematic review and meta-analysis.J Am Vet Med Assoc. 2024 Mar 16;262(S1):S50-S60. doi: 10.2460/javma.23.12.0723. Print 2024 Jun 1. J Am Vet Med Assoc. 2024. PMID: 38471305
Cited by
-
Demineralized bone matrix combined bone marrow mesenchymal stem cells, bone morphogenetic protein-2 and transforming growth factor-β3 gene promoted pig cartilage defect repair.PLoS One. 2014 Dec 29;9(12):e116061. doi: 10.1371/journal.pone.0116061. eCollection 2014. PLoS One. 2014. PMID: 25545777 Free PMC article.
-
Coaxial nanofiber scaffold with super-active platelet lysate to accelerate the repair of bone defects.RSC Adv. 2020 Sep 29;10(59):35776-35786. doi: 10.1039/d0ra06305c. eCollection 2020 Sep 28. RSC Adv. 2020. PMID: 35517109 Free PMC article.
-
Bioadhesive and Injectable Hydrogels and Their Correlation with Mesenchymal Stem Cells Differentiation for Cartilage Repair: A Mini-Review.Polymers (Basel). 2023 Oct 26;15(21):4228. doi: 10.3390/polym15214228. Polymers (Basel). 2023. PMID: 37959908 Free PMC article. Review.
-
The Effects of Platelet-Rich and Platelet-Poor Plasma on Biological Characteristics of BM-MSCs In Vitro.Anal Cell Pathol (Amst). 2020 Aug 26;2020:8546231. doi: 10.1155/2020/8546231. eCollection 2020. Anal Cell Pathol (Amst). 2020. PMID: 32908815 Free PMC article.
References
-
- Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo [poly (ethylene glycol) fumarate] hydrogel scaffolds. J Biomed Mater Res A. 2005;75:156–167. - PubMed
-
- Kuroda R, Ishida K, Matsumoto T, et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage. 2007;15:226–231. - PubMed
-
- Wilke MM, Nydam DV, Nixon AJ. Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. J Orthop Res. 2007;25:913–925. - PubMed
-
- Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG. Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials. 2005;26:7095–7103. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials