Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct 25;14(1):729.
doi: 10.1186/1471-2164-14-729.

The scale and evolutionary significance of horizontal gene transfer in the choanoflagellate Monosiga brevicollis

Affiliations

The scale and evolutionary significance of horizontal gene transfer in the choanoflagellate Monosiga brevicollis

Jipei Yue et al. BMC Genomics. .

Abstract

Background: It is generally agreed that horizontal gene transfer (HGT) is common in phagotrophic protists. However, the overall scale of HGT and the cumulative impact of acquired genes on the evolution of these organisms remain largely unknown.

Results: Choanoflagellates are phagotrophs and the closest living relatives of animals. In this study, we performed phylogenomic analyses to investigate the scale of HGT and the evolutionary importance of horizontally acquired genes in the choanoflagellate Monosiga brevicollis. Our analyses identified 405 genes that are likely derived from algae and prokaryotes, accounting for approximately 4.4% of the Monosiga nuclear genome. Many of the horizontally acquired genes identified in Monosiga were probably acquired from food sources, rather than by endosymbiotic gene transfer (EGT) from obsolete endosymbionts or plastids. Of 193 genes identified in our analyses with functional information, 84 (43.5%) are involved in carbohydrate or amino acid metabolism, and 45 (23.3%) are transporters and/or involved in response to oxidative, osmotic, antibiotic, or heavy metal stresses. Some identified genes may also participate in biosynthesis of important metabolites such as vitamins C and K12, porphyrins and phospholipids.

Conclusions: Our results suggest that HGT is frequent in Monosiga brevicollis and might have contributed substantially to its adaptation and evolution. This finding also highlights the importance of HGT in the genome and organismal evolution of phagotrophic eukaryotes.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Molecular phylogenies of bacterial or algal genes in M. brevicollis . A. L-threonine 3-dehydrogenase (GenBank accession number: XP_001746273). B. D-beta-hydroxybutyrate dehydrogenase (GenBank accession number: XP_001744068). C. Metallo-beta-lactamase (GenBank accession number: XP_001747251). D. L-galactono-1,4-lactone dehydrogenase (GenBank accession number: XP_001748157). Numbers associated with branches show bootstrap values from maximum likelihood and distance analyses, respectively. Asterisks indicate bootstrap values lower than 50%. Taxonomic affiliations are shown after genus names, with choanoflagellates bolded.
Figure 2
Figure 2
Evaluation of three computational programs on prediction of prokaryotic and algal genes in M. brevicollis .ÉFor AlienG, the alien index threshold was set to 1.2. For PhyloGenie, bootstrap value threshold for interested branches was set to 50%. Prediction results from three programs are shown in three different colors. The percentages in white ovals indicate positive rates (before hyphen) and false negative rates (after hyphen). The percentage in colored background indicates the positive rate for each part and is shown above. The numbers of foreign genes identified by manual curation (before slash) and originally predicted (after slash) are shown below.
Figure 3
Figure 3
Functional categories for genes acquired from algae and bacteria in M. brevicollis .

Similar articles

Cited by

References

    1. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405(6784):299–304. doi: 10.1038/35012500. - DOI - PubMed
    1. Gogarten JP, Doolittle WF, Lawrence JG. Prokaryotic evolution in light of gene transfer. Mol Biol Evol. 2002;19(12):2226–2238. doi: 10.1093/oxfordjournals.molbev.a004046. - DOI - PubMed
    1. Andersson JO. Lateral gene transfer in eukaryotes. Cell Mol Life Sci. 2005;62(11):1182–1197. doi: 10.1007/s00018-005-4539-z. - DOI - PMC - PubMed
    1. Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet. 2008;9(8):605–618. doi: 10.1038/nrg2386. - DOI - PubMed
    1. Doolittle WF. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 1998;14(8):307–311. doi: 10.1016/S0168-9525(98)01494-2. - DOI - PubMed

Publication types

LinkOut - more resources