Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Nov 27;135(47):17983-9.
doi: 10.1021/ja409995w. Epub 2013 Nov 14.

Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification

Affiliations

Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification

Ankit Sharma et al. J Am Chem Soc. .

Abstract

We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

PubMed Disclaimer

Figures

Figure 1
Figure 1
General Strategy for Aliphatic or Allylic C-H bond Functionalization
Chart 1
Chart 1
Effect of Ligands on Palladium Catalyzed benzoylation of Allylic C-H Bondsa
Chart 2
Chart 2
Scope of the Alkenes and nucleophiles in the Allylic C-H bond Functionalizationa
Chart 3
Chart 3
Iterative C-H Functionalization: Synthesis of (1,n)-Functionalized Alkenes
Scheme 1
Scheme 1
Synthesis of biologically active molecules
Scheme 2
Scheme 2
Synthesis of chiral fragment of spongistatin

Similar articles

Cited by

References

    1. Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009;52:6752. - PubMed
    1. White MC. Science. 2012;335:807. - PubMed
    2. Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem., Int. Ed. 2012;51:8960. - PubMed
    3. Song GY, Wang F, Li XW. Chem. Soc. Rev. 2012;41:3651. - PubMed
    4. Ramirez TA, Zhao BG, Shi Y. Chem. Soc. Rev. 2012;41:931. - PubMed
    5. Neufeldt SR, Sanford MS. Acc. Chem. Res. 2012;45:936. - PMC - PubMed
    6. Roizen JL, Harvey ME, Du Bois J. Acc. Chem. Res. 2012;45:911. - PMC - PubMed
    7. Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem., Int. Ed. 2012;51:10236. - PubMed
    8. Campbell AN, Stahl SS. Acc. Chem. Res. 2012;45:851. - PMC - PubMed
    9. McMurray L, O'Hara F, Gaunt MJ. Chem. Soc. Rev. 2011;40:1885. - PubMed
    10. Boorman TC, Larrosa I. Chem. Soc. Rev. 2011;40:1910. - PubMed
    11. Mkhalid IAI, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010;110:890. - PubMed
    12. Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010;110:624. - PMC - PubMed
    13. Giri R, Shi BF, Engle KM, Maugel N, Yu JQ. Chem. Soc. Rev. 2009;38:3242. - PubMed
    14. Bergman RG. Nature. 2007;446:391. - PubMed
    15. Sun CL, Li BJ, Shi ZJ. Chem. Rev. 2011;111:1293. - PubMed
    1. El-Qisiari AK, Qaseer HA, Henry PM. Tetrahedron Lett. 2002;43:4229.
    2. Clark JS, Roche C. Chem. Commun. 2005:5175. - PubMed
    3. Zhou ZN, Andrus MB. Tetrahedron Lett. 2012;53:4518.
    4. Hoang VDM, Reddy PAN, Kim TJ. Organometallics. 2008;27:1026.
    5. Eames J, Watkinson M. Angew. Chem., Int. Ed. 2001;40:3567. - PubMed
    6. Malkov AV, Pernazza D, Bell M, Bella M, Massa A, Teply F, Meghani P, Kocovsky P. J. Org. Chem. 2003;68:4727. - PubMed
    7. Andrus MB, Zhou ZN. J. Am. Chem. Soc. 2002;124:8806. - PubMed
    8. Chai Z, Rainey TJ. J. Am. Chem. Soc. 2012;134:3615. - PubMed
    9. Li QA, Yu ZX. Angew. Chem. 2011;50:2144. - PubMed
    10. Collet F, Lescot C, Dauban P. Chem. Soc. Rev. 2011;40:1926. - PubMed
    11. Covell DJ, White MC. Angew. Chem., Int. Ed. 2008;47:6448. - PMC - PubMed
    12. Nishioka Y, Uchida T, Katsuki T. Angew. Chem., Int. Ed. 2013;52:1739. - PubMed
    13. Trost BM, Thaisrivongs DA, Donckele JE. Angew. Chem., Int. Ed. 2012;52:1523. - PubMed
    14. Davies HML, Morton D. Chem. Soc. Rev. 2011;40:1857. - PubMed
    15. Bao HL, Tambar UK. J. Am. Chem. Soc. 2012;134:18495. - PMC - PubMed
    1. Hartwig JF. Organotransition metal chemistry : from bonding to catalysis. University Science Books; Sausalito, Calif: 2010.
    2. Tsuji J. In: Palladium reagents and catalysts : new perspectives for the 21st century. 2nd ed. Wiley J, editor. Chichester, West Sussex; Hoboken, NJ: 2004.
    3. Buchwald SL. Adv. Synth. Catal. 2004;346:1524. - PMC - PubMed
    4. March J. Advanced organic chemistry: reactions, mechanisms, and structure. McGraw-Hill; New York: 1968.
    1. Leow D, Li G, Mei TS, Yu JQ. Nature. 2012;486:518. - PMC - PubMed
    2. Dai HX, Yu JQ. J. Am. Chem. Soc. 2012;134:134. - PubMed
    3. Wang CM, Chen H, Wang ZF, Chen JA, Huang Y. Angew. Chem., Int. Ed. 2012;51:7242. - PubMed
    4. Rousseau G, Breit B. Angew. Chem., Int. Ed. 2011;50:2450. - PubMed
    5. Lyons TW, Sanford MS. Chem. Rev. 2010;110:1147. - PMC - PubMed

Publication types