Maintaining genome stability in the nervous system
- PMID: 24165679
- PMCID: PMC4112580
- DOI: 10.1038/nn.3537
Maintaining genome stability in the nervous system
Abstract
Active maintenance of genome stability is a prerequisite for the development and function of the nervous system. The high replication index during neurogenesis and the long life of mature neurons highlight the need for efficient cellular programs to safeguard genetic fidelity. Multiple DNA damage response pathways ensure that replication stress and other types of DNA lesions, such as oxidative damage, do not affect neural homeostasis. Numerous human neurologic syndromes result from defective DNA damage signaling and compromised genome integrity. These syndromes can involve different neuropathology, which highlights the diverse maintenance roles that are required for genome stability in the nervous system. Understanding how DNA damage signaling pathways promote neural development and preserve homeostasis is essential for understanding fundamental brain function.
Figures




Similar articles
-
Genome integrity and disease prevention in the nervous system.Genes Dev. 2017 Jun 15;31(12):1180-1194. doi: 10.1101/gad.301325.117. Genes Dev. 2017. PMID: 28765160 Free PMC article. Review.
-
Responding to DNA double strand breaks in the nervous system.Neuroscience. 2007 Apr 14;145(4):1365-74. doi: 10.1016/j.neuroscience.2006.07.026. Epub 2006 Aug 23. Neuroscience. 2007. PMID: 16934412 Review.
-
Protective Mechanisms Against DNA Replication Stress in the Nervous System.Genes (Basel). 2020 Jun 30;11(7):730. doi: 10.3390/genes11070730. Genes (Basel). 2020. PMID: 32630049 Free PMC article. Review.
-
Chromatin Dynamics in Genome Stability: Roles in Suppressing Endogenous DNA Damage and Facilitating DNA Repair.Int J Mol Sci. 2017 Jul 10;18(7):1486. doi: 10.3390/ijms18071486. Int J Mol Sci. 2017. PMID: 28698521 Free PMC article. Review.
-
Genome instability syndromes caused by impaired DNA repair and aberrant DNA damage responses.Cell Biol Toxicol. 2018 Oct;34(5):337-350. doi: 10.1007/s10565-018-9429-x. Epub 2018 Apr 5. Cell Biol Toxicol. 2018. PMID: 29623483 Review.
Cited by
-
A MYCN-MRN complex axis controls replication stress for the safe expansion of neuroprogenitor cells.Mol Cell Oncol. 2015 Sep 11;3(2):e1079673. doi: 10.1080/23723556.2015.1079673. eCollection 2016 Mar. Mol Cell Oncol. 2015. PMID: 27308604 Free PMC article.
-
Differences in peripheral neuropathy in xeroderma pigmentosum complementation groups A and D as evaluated by nerve conduction studies.BMC Neurol. 2021 Oct 9;21(1):393. doi: 10.1186/s12883-021-02414-2. BMC Neurol. 2021. PMID: 34627174 Free PMC article.
-
TOP2β-Dependent Nuclear DNA Damage Shapes Extracellular Growth Factor Responses via Dynamic AKT Phosphorylation to Control Virus Latency.Mol Cell. 2019 May 2;74(3):466-480.e4. doi: 10.1016/j.molcel.2019.02.032. Epub 2019 Mar 28. Mol Cell. 2019. PMID: 30930055 Free PMC article.
-
C. elegans as an Animal Model to Study the Intersection of DNA Repair, Aging and Neurodegeneration.Front Aging. 2022 Jun 22;3:916118. doi: 10.3389/fragi.2022.916118. eCollection 2022. Front Aging. 2022. PMID: 35821838 Free PMC article. Review.
-
Genomic Mosaicism of the Brain: Origin, Impact, and Utility.Neurosci Bull. 2024 Jun;40(6):759-776. doi: 10.1007/s12264-023-01124-8. Epub 2023 Oct 29. Neurosci Bull. 2024. PMID: 37898991 Free PMC article. Review.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical