Strategies for the multiplex mapping of genes to traits
- PMID: 24171944
- PMCID: PMC3842685
- DOI: 10.1186/1475-2859-12-99
Strategies for the multiplex mapping of genes to traits
Abstract
Rewiring and optimization of metabolic networks to enable the production of commercially valuable chemicals is a central goal of metabolic engineering. This prospect is challenged by the complexity of metabolic networks, lack of complete knowledge of gene function(s), and the vast combinatorial genotype space that is available for exploration and optimization. Various approaches have thus been developed to aid in the efficient identification of genes that contribute to a variety of different phenotypes, allowing more rapid design and engineering of traits desired for industrial applications. This review will highlight recent technologies that have enhanced capabilities to map genotype-phenotype relationships on a genome wide scale and emphasize how such approaches enable more efficient design and engineering of complex phenotypes.
Figures



Similar articles
-
Automated multiplex genome-scale engineering in yeast.Nat Commun. 2017 May 4;8:15187. doi: 10.1038/ncomms15187. Nat Commun. 2017. PMID: 28469255 Free PMC article.
-
Systems metabolic engineering for chemicals and materials.Trends Biotechnol. 2011 Aug;29(8):370-8. doi: 10.1016/j.tibtech.2011.04.001. Epub 2011 May 10. Trends Biotechnol. 2011. PMID: 21561673 Review.
-
Evolutionary programming as a platform for in silico metabolic engineering.BMC Bioinformatics. 2005 Dec 23;6:308. doi: 10.1186/1471-2105-6-308. BMC Bioinformatics. 2005. PMID: 16375763 Free PMC article.
-
Genomics enabled approaches in strain engineering.Curr Opin Microbiol. 2009 Jun;12(3):223-30. doi: 10.1016/j.mib.2009.04.005. Epub 2009 May 19. Curr Opin Microbiol. 2009. PMID: 19467921 Review.
-
Genome-Scale 13C Fluxomics Modeling for Metabolic Engineering of Saccharomyces cerevisiae.Methods Mol Biol. 2019;1859:317-345. doi: 10.1007/978-1-4939-8757-3_19. Methods Mol Biol. 2019. PMID: 30421239
Cited by
-
Rapid prototyping of microbial cell factories via genome-scale engineering.Biotechnol Adv. 2015 Nov 15;33(7):1420-32. doi: 10.1016/j.biotechadv.2014.11.007. Epub 2014 Nov 20. Biotechnol Adv. 2015. PMID: 25450192 Free PMC article. Review.
-
Rapid selective sweep of pre-existing polymorphisms and slow fixation of new mutations in experimental evolution of Desulfovibrio vulgaris.ISME J. 2015 Nov;9(11):2360-72. doi: 10.1038/ismej.2015.45. Epub 2015 Apr 7. ISME J. 2015. PMID: 25848870 Free PMC article.
-
Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges.J Ind Microbiol Biotechnol. 2019 Oct;46(9-10):1343-1358. doi: 10.1007/s10295-019-02211-4. Epub 2019 Jul 5. J Ind Microbiol Biotechnol. 2019. PMID: 31278525 Review.
References
-
- Zhou H, Cheng J-S, Wang BL, Fink GR, Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by saccharomyces cerevisiae. Metab Eng. 2012;14:611–622. doi: 10.1016/j.ymben.2012.07.011. - DOI - PubMed
-
- Leonard E, Ajikumar PK, Thayer K, Xiao W-H, Mo JD, Tidor B, Stephanopoulos G, Prather KLJ. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci. 2010;107:13654–13659. doi: 10.1073/pnas.1006138107. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources