Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan;42(Database issue):D1176-81.
doi: 10.1093/nar/gkt1000. Epub 2013 Oct 29.

P-MITE: a database for plant miniature inverted-repeat transposable elements

Affiliations

P-MITE: a database for plant miniature inverted-repeat transposable elements

Jiongjiong Chen et al. Nucleic Acids Res. 2014 Jan.

Abstract

Miniature inverted-repeat transposable elements (MITEs) are prevalent in eukaryotic species including plants. MITE families vary dramatically and usually cannot be identified based on homology. In this study, we de novo identified MITEs from 41 plant species, using computer programs MITE Digger, MITE-Hunter and/or Repetitive Sequence with Precise Boundaries (RSPB). MITEs were found in all, but one (Cyanidioschyzon merolae), species. Combined with the MITEs identified previously from the rice genome, >2.3 million sequences from 3527 MITE families were obtained from 41 plant species. In general, higher plants contain more MITEs than lower plants, with a few exceptions such as papaya, with only 538 elements. The largest number of MITEs is found in apple, with 237 302 MITE sequences. The number of MITE sequences in a genome is significantly correlated with genome size. A series of databases (plant MITE databases, P-MITE), available online at http://pmite.hzau.edu.cn/django/mite/, was constructed to host all MITE sequences from the 41 plant genomes. The databases are available for sequence similarity searches (BLASTN), and MITE sequences can be downloaded by family or by genome. The databases can be used to study the origin and amplification of MITEs, MITE-derived small RNAs and roles of MITEs on gene and genome evolution.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Strong correlation between the number of MITEs and genome assembly size. Genomes with disproportionately low copy (➁ papaya and ➂ Physcomitrella patens) and high copy (➀ rice and ➃ apple) of MITEs are indicated.

References

    1. Feschotte C, Mouches C. Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol. Biol. Evol. 2000;17:730–737. - PubMed
    1. Feschotte C, Swamy L, Wessler SR. Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs) Genetics. 2003;163:747–758. - PMC - PubMed
    1. Han Y, Qin S, Wessler SR. Comparison of class 2 transposable elements at superfamily resolution reveals conserved and distinct features in cereal grass genomes. BMC Genomics. 2013;14:71. - PMC - PubMed
    1. Tu Z. Three novel families of miniature inverted-repeat transposable elements are associated with genes of the yellow fever mosquito, Aedes aegypti. Proc. Natl Acad. Sci. USA. 1997;94:7475–7480. - PMC - PubMed
    1. Yang G, Lee YH, Jiang Y, Shi X, Kertbundit S, Hall TC. A two-edged role for the transposable element Kiddo in the rice ubiquitin2 promoter. Plant Cell. 2005;17:1559–1568. - PMC - PubMed

Publication types

Substances