Nucleus accumbens responses differentiate execution and restraint in reward-directed behavior
- PMID: 24174652
- PMCID: PMC3921383
- DOI: 10.1152/jn.00350.2013
Nucleus accumbens responses differentiate execution and restraint in reward-directed behavior
Abstract
Our behavior is powerfully driven by environmental cues that signal the availability of rewarding stimuli. We frequently encounter stimuli-a bowl of candy or an alert from our smartphone-that trigger actions to obtain those rewards, even though there may be positive outcomes associated with not acting. The inability to restrain one's action in the presence of reward-associated cues is one type of impulsive behavior and a component of such maladaptive behaviors as overeating, gambling, and substance abuse. The nucleus accumbens (NAc) is ideally situated to integrate multiple cognitive and affective inputs to bias action via outputs through the basal ganglia. NAc neurons have been shown to respond to cues that predict reward availability, goal-directed behaviors aimed at obtaining them, and delivery of the reward itself. As these processes are typically associated, it is difficult to discern whether signals in the NAc are more closely related to processing reward-predictive aspects of goal-directed behavior or selection of behavioral response. To dissociate these possibilities, we recorded the activity of NAc neurons while rats performed a task in which two different cues both informed rats of reward availability but required them to either press a lever (Go) or withhold pressing (NoGo) to obtain the reward. Individual cue-responsive neurons showed either increases or decreases in activity at cue onset. Increases in activity were larger, and decreases smaller, when rats withheld lever pressing, whether correctly for NoGo trials or in error on Go trials. Thus NAc cue responses correlated with action, regardless of cue type or accuracy.
Keywords: executive control; nucleus accumbens; reward; rodent.
Figures
References
-
- Basar K, Sesia T, Groenewegen H, Steinbusch HW, Visser-Vandewalle V, Temel Y. Nucleus accumbens and impulsivity. Prog Neurobiol 92: 533–557, 2010 - PubMed
-
- Boucher L, Palmeri TJ, Logan GD, Schall JD. Inhibitory control in mind and brain: an interactive race model of countermanding saccades. Psychol Rev 114: 376–397, 2007 - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
