ω3 fatty acid desaturases from microorganisms: structure, function, evolution, and biotechnological use
- PMID: 24177732
- PMCID: PMC3937066
- DOI: 10.1007/s00253-013-5336-5
ω3 fatty acid desaturases from microorganisms: structure, function, evolution, and biotechnological use
Abstract
The biosynthesis of very-long-chain polyunsaturated fatty acids involves an alternating process of fatty acid desaturation and elongation catalyzed by complex series of enzymes. ω3 desaturase plays an important role in converting ω6 fatty acids into ω3 fatty acids. Genes for this desaturase have been identified and characterized in a wide range of microorganisms, including cyanobacteria, yeasts, molds, and microalgae. Like all fatty acid desaturases, ω3 desaturase is structurally characterized by the presence of three highly conserved histidine-rich motifs; however, unlike some desaturases, it lacks a cytochrome b5-like domain. Understanding the structure, function, and evolution of ω3 desaturases, particularly their substrate specificities in the biosynthesis of very-long-chain polyunsaturated fatty acids, lays the foundation for potential production of various ω3 fatty acids in transgenic microorganisms.
Figures



Similar articles
-
Comparison of the Substrate Preferences of ω3 Fatty Acid Desaturases for Long Chain Polyunsaturated Fatty Acids.Int J Mol Sci. 2019 Jun 22;20(12):3058. doi: 10.3390/ijms20123058. Int J Mol Sci. 2019. PMID: 31234541 Free PMC article.
-
Identification of bifunctional delta12/omega3 fatty acid desaturases for improving the ratio of omega3 to omega6 fatty acids in microbes and plants.Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9446-51. doi: 10.1073/pnas.0511079103. Epub 2006 Jun 8. Proc Natl Acad Sci U S A. 2006. PMID: 16763049 Free PMC article.
-
The front-end desaturase: structure, function, evolution and biotechnological use.Lipids. 2012 Mar;47(3):227-37. doi: 10.1007/s11745-011-3617-2. Epub 2011 Oct 19. Lipids. 2012. PMID: 22009657 Review.
-
A novel omega3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid.Biochem J. 2004 Mar 1;378(Pt 2):665-71. doi: 10.1042/BJ20031319. Biochem J. 2004. PMID: 14651475 Free PMC article.
-
Structure and expression of fatty acid desaturases.Biochim Biophys Acta. 1998 Oct 2;1394(1):3-15. doi: 10.1016/s0005-2760(98)00091-5. Biochim Biophys Acta. 1998. PMID: 9767077 Review.
Cited by
-
Temperature Acclimation of the Picoalga Ostreococcus tauri Triggers Early Fatty-Acid Variations and Involves a Plastidial ω3-Desaturase.Front Plant Sci. 2021 Mar 19;12:639330. doi: 10.3389/fpls.2021.639330. eCollection 2021. Front Plant Sci. 2021. PMID: 33815446 Free PMC article.
-
Impact of Tween 80 on Fatty Acid Composition in Two Bacterial Species.Arch Razi Inst. 2021 Dec 30;76(6):1617-1627. doi: 10.22092/ari.2021.356359.1826. eCollection 2021 Dec. Arch Razi Inst. 2021. PMID: 35546975 Free PMC article.
-
Dietary supplementing South African indigenous rams with flaxseed oil and ascorbic acid improves cryopreserved semen quality and in vitro fertility.Trop Anim Health Prod. 2024 Jul 10;56(6):200. doi: 10.1007/s11250-024-04057-0. Trop Anim Health Prod. 2024. PMID: 38985221 Free PMC article.
-
Microalgae as Raw Materials for Aquafeeds: Growth Kinetics and Improvement Strategies of Polyunsaturated Fatty Acids Production.Aquac Nutr. 2023 Jan 6;2023:5110281. doi: 10.1155/2023/5110281. eCollection 2023. Aquac Nutr. 2023. PMID: 36860971 Free PMC article. Review.
-
Unique fatty acid desaturase capacities uncovered in Hediste diversicolor illustrate the roles of aquatic invertebrates in trophic upgrading.Philos Trans R Soc Lond B Biol Sci. 2020 Aug 3;375(1804):20190654. doi: 10.1098/rstb.2019.0654. Epub 2020 Jun 15. Philos Trans R Soc Lond B Biol Sci. 2020. PMID: 32536307 Free PMC article.
References
-
- Aguilar PS, de Mendoza D. Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Mol Microbiol. 2006;62(6):1507–1514. doi:10.1111/j.1365-2958.2006.05484.x. - PubMed
-
- Aitzetmüller K, Tsevegsüren N. Seed fatty acids, «front-end»-desaturases and chemotaxonomy—a case study in the Ranunculaceae. J Plant Physiol. 1994;143(4–5):538–543. doi:10.1007/BF00039536.
-
- Ando A, Sumida Y, Negoro H, Suroto DA, Ogawa J, Sakuradani E, Shimizu S. Establishment of Agrobacterium tumefaciens-mediated transformation of an oleaginous fungus, Mortierella alpina 1S-4, and its application for eicosapentaenoic acid producer breeding. Appl Environ Microbiol. 2009;75(17):5529–5535. doi:10.1128/AEM.00648-09. - PMC - PubMed
-
- Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, Ishmael N, John T, Darmond C, Moisan MC, Henrissat B, Coutinho PM, Lombard V, Natvig DO, Lindquist E, Schmutz J, Lucas S, Harris P, Powlowski J, Bellemare A, Taylor D, Butler G, de Vries RP, Allijn IE, van den Brink J, Ushinsky S, Storms R, Powell AJ, Paulsen IT, Elbourne LD, Baker SE, Magnuson J, Laboissiere S, Clutterbuck AJ, Martinez D, Wogulis M, de Leon AL, Rey MW, Tsang A. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol. 2011;29(10):922–927. doi:10.1038/nbt.1976. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources