Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Oct 30;54(3):645-9.

Platelet membrane potential: simultaneous measurement of diSC3(5) fluorescence and optical density

  • PMID: 2418525

Platelet membrane potential: simultaneous measurement of diSC3(5) fluorescence and optical density

E Pipili. Thromb Haemost. .

Abstract

The role of membrane potential in the activation of human platelets by thrombin, ADP and PAF was assessed, using the fluorescent probe diSC3(5). Thrombin, ADP and PAF transiently depolarised the platelet membrane by 6-8 mV from its resting level (-70 mV). This depolarisation had a similar time course to that of shape change. The ionophores valinomycin and gramicidin hyperpolarised and depolarised the platelets respectively but did not activate them. In contrast, exposure of platelets to high K+ media both depolarised and caused them to change shape. Removal of Na+ from the suspension media abolished the depolarisation induced by thrombin, ADP and PAF but the platelets under these conditions were still capable of changing shape and aggregating. This result indicates that the observed depolarisation depends on Na+ fluxes. Amiloride or tetrodotoxin did not mimic the effect of Na+ removal suggesting that any Na+ movement involved does not go through the classic "Na+ channel". Thrombin, ADP and PAF still depolarised the platelet membrane in the absence of added Ca++. Under these conditions, however, the membrane did not repolarise. It is evident that all three agents, thrombin, ADP and PAF, change the membrane potential of human washed platelets through a similar mechanism and this change seems to be a consequence of stimulus-receptor interaction (and platelet activation?). A causal relationship however between these events cannot be clearly shown.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms